Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool

The spectacular growth of the Internet and its widespread adoption by worldwide corporations lead to an enormous quantity of heterogeneous, distributed and autonomous data sources. To facilitate the access to these huge amounts of data and make these sources interoperable, two technologies may be combined: data warehousing and ontologies. Data warehouses are designed to aggregate data and allow decision makers in these companies to obtain accurate, complete and up to date information. In the past decade, data warehouse technology (DWT) has been successfully applied in several domains such as telecommunication, retail, finance and many other industries. It supports a wide range of applications throughout the enterprise. The DWT has been largely used to offer sustainable solutions for enterprises. On the other hand, ontologies are models for specifying the semantics of concepts used by various heterogenous sources in a well defined and unambiguous way. Ontologies exist in various domains (E-commerce, Engineering, Tourism, etc.) and are used to increase interoperability between sources. They may be used to improve communication between decision makers and users collaborating together, by specifying the semantics of the used concepts. In this paper, we propose a methodology for designing data warehousing applications from various sources. Each source has its local ontology referencing a global one. For satisfying its local requirements and giving to sources more autonomy, each source may specialize/extend the global ontology. The presence of ontologies has three main contributions: (i) each owner of each source may use it to define his/her requirements, (ii) it reduces most important types of conflicts that may exist in sources and requirements (schematic and semantic) and (iii) it facilitates the sustainable urbanisation of the target data warehouse. Our methodology is supported by a case tool facilitating the tasks of data warehouse designers.

[1]  Silvana Castano,et al.  Global Viewing of Heterogeneous Data Sources , 2001, IEEE Trans. Knowl. Data Eng..

[2]  Eugene Inseok Chong,et al.  Supporting Ontology-Based Semantic matching in RDBMS , 2004, VLDB.

[3]  Brahim Chaib-draa,et al.  Causal Maps: Theory, Implementation, and Practical Applications in Multiagent Environments , 2002, IEEE Trans. Knowl. Data Eng..

[4]  Peter P. Chen The Entity-Relationship Model: Towards a unified view of Data , 1976 .

[5]  Torben Bach Pedersen,et al.  Multidimensional Integrated Ontologies: A Framework for Designing Semantic Data Warehouses , 2009, J. Data Semant..

[6]  Michel C. A. Klein,et al.  Ontology Evolution: Not the Same as Schema Evolution , 2004, Knowledge and Information Systems.

[7]  Ricardo Jardim-Gonçalves,et al.  Dynamic Business Networks: A Headache for Sustainable Systems Interoperability , 2009, OTM Workshops.

[8]  Camille Salinesi,et al.  A Requirement-driven Approach for Designing Data Warehouses , 2006 .

[9]  Guy Pierra,et al.  Context Representation in Domain Ontologies and Its Use for Semantic Integration of Data , 2008, J. Data Semant..

[10]  G. Pierra,et al.  Context-explication in conceptual ontologies: PLIB ontologies and their use for industrial data , 2004 .

[11]  Dimitrios Skoutas,et al.  Designing ETL processes using semantic web technologies , 2006, DOLAP '06.

[12]  Brian McBride,et al.  Jena: Implementing the RDF Model and Syntax Specification , 2001, SemWeb.

[13]  Ricardo Jardim-Gonçalves,et al.  Monitoring Morphisms to Support Sustainable Interoperability of Enterprise Systems , 2011, OTM Workshops.

[14]  Colette Rolland,et al.  REASONING WITH GOALS TO ENGINEER REQUIREMENTS , 2004 .

[15]  Ladjel Bellatreche,et al.  A design methodology of ontology based database applications , 2011, Log. J. IGPL.

[16]  Robert Winter,et al.  A method for demand-driven information requirements analysis in data warehousing projects , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[17]  Michael A. King A Realistic Data Warehouse Project: An Integration of Microsoft Access[R] and Microsoft Excel[R] Advanced Features and Skills. , 2009 .

[18]  Diego Calvanese,et al.  Discovering functional dependencies for multidimensional design , 2009, DOLAP.

[19]  Atanas Kiryakov,et al.  OWLIM - A Pragmatic Semantic Repository for OWL , 2005, WISE Workshops.

[20]  Paolo Giorgini,et al.  Goal-oriented requirement analysis for data warehouse design , 2005, DOLAP '05.

[21]  Daniel J. Abadi,et al.  SW-Store: a vertically partitioned DBMS for Semantic Web data management , 2009, The VLDB Journal.

[22]  Ladjel Bellatreche,et al.  A Versioning Management Model for Ontology-Based Data Warehouses , 2006, DaWaK.

[23]  Matteo Golfarelli,et al.  Data Warehouse Design: Modern Principles and Methodologies , 2009 .

[24]  Dimitris Plexousakis,et al.  Exelixis: evolving ontology-based data integration system , 2011, SIGMOD '11.

[25]  Mario Piattini,et al.  Improving the Development of Data Warehouses by Enriching Dimension Hierarchies with WordNet , 2005, ODBIS.

[26]  Torben Bach Pedersen,et al.  Discovering Multidimensional Structure in Relational Data , 2004, DaWaK.

[27]  H. D. Rombach,et al.  The Goal Question Metric Approach , 1994 .

[28]  Esteban Zimányi,et al.  Hierarchies in a multidimensional model: From conceptual modeling to logical representation , 2006, Data Knowl. Eng..

[29]  Alberto Abelló,et al.  GEM: Requirement-Driven Generation of ETL and Multidimensional Conceptual Designs , 2011, DaWaK.

[30]  Ladjel Bellatreche,et al.  Evolution Management of Data Integration Systems by the Means of Ontological Continuity Principle , 2012 .

[31]  Kajal T. Claypool,et al.  From Ontology to Relational Databases , 2004, ER.

[32]  Chimène Fankam OntoDB2 : un système flexible et efficient de base de données à base ontologique pour le web sémantique et les données techniques. (OntoDB2) , 2009 .

[33]  Vijayan Sugumaran,et al.  The role of domain ontologies in database design: An ontology management and conceptual modeling environment , 2006, TODS.

[34]  A Min Tjoa,et al.  Process-Oriented Requirement Analysis Supporting the Data Warehouse Design Process - A Use Case Driven Approach , 2000, DEXA.

[35]  Yamine Aït Ameur,et al.  Domain Ontologies: A Database-Oriented Analysis , 2006, WEBIST.

[36]  Patrick Valduriez,et al.  Web Data Management , 2019, Principles of Distributed Database Systems.

[37]  Stéphane Bressan,et al.  Context Interchange: New Features and Formalisms for the Intelligent Integration of Information Context Interchange: New Features and Formalisms for the Intelligent Integration of Information , 1997 .

[38]  Ladjel Bellatreche,et al.  A methodology and tool for conceptual designing a data warehouse from ontology-based sources , 2010, DOLAP '10.

[39]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[40]  Beate List,et al.  A HOLISTIC APPROACH FOR MANAGINGREQUIREMENTS OF DATA WAREHOUSE SYSTEMS , 2002 .

[41]  Jose-Norberto Mazón,et al.  Applying the i* Framework to the Development of Data Warehouses , 2008, iStar.

[42]  Matteo Golfarelli,et al.  A methodological framework for data warehouse design , 1998, DOLAP '98.

[43]  Guy Doumeingts,et al.  Architectures for enterprise integration and interoperability: Past, present and future , 2008, Comput. Ind..

[44]  Arie Shoshani,et al.  Summarizability in OLAP and statistical data bases , 1997, Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150).

[45]  Ladjel Bellatreche,et al.  OntoDB: An Ontology-Based Database for Data Intensive Applications , 2007, DASFAA.

[46]  Ladjel Bellatreche,et al.  Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases , 2006, Comput. Ind..

[47]  Johann Eder,et al.  Creation and management of versions in multiversion data warehouse , 2004, SAC '04.

[48]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[49]  Rafael Berlanga Llavori,et al.  Safe and Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool Support , 2008, OWLED.

[50]  Gottfried Vossen,et al.  Schema Versioning in Data Warehouses , 2004, ER.

[51]  H. König,et al.  Anforderungsdefinition und -spezifikation für PAC-Systeme (Picture Archiving and Communications System) Ein Leistungsverzeichnis in Anlehnung an den Standard„IEEE Recommended Practice for Software Requirements Specifications” , 1999, Der Radiologe.

[52]  Ladjel Bellatreche,et al.  Extending the ANSI/SPARC Architecture Database with Explicit Data Semantics: An Ontology-Based Approach , 2008, ECSA.

[53]  Stefano Paraboschi,et al.  Designing data marts for data warehouses , 2001, TSEM.

[54]  Panos Vassiliadis,et al.  Towards Quality-oriented Data Warehouse Usage and Evolution , 2000, Inf. Syst..

[55]  Martin Glinz,et al.  On Non-Functional Requirements , 2007, 15th IEEE International Requirements Engineering Conference (RE 2007).

[56]  Ritu Khare,et al.  SAMSTAR: a semi-automated lexical method for generating star schemas from an entity-relationship diagram , 2007, DOLAP '07.

[57]  Diego Calvanese,et al.  Data Integration in Data Warehousing (Keynote Address) , 2001, CAiSE Workshops.

[58]  Beate List,et al.  Developing Requirements for Data Warehouse Systems with Use Cases , 2001 .

[59]  Arnaud Giacometti,et al.  Query recommendations for OLAP discovery driven analysis , 2009, DOLAP.

[60]  Claes Wohlin,et al.  Engineering and Managing Software Requirements , 2005 .

[61]  J. Bao,et al.  A Survey of Formalisms for Modular Ontologies , 2006 .

[62]  Frank van Harmelen,et al.  Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema , 2002, SEMWEB.

[63]  Yvonne Ferguson The fundamentals of data warehousing , 2002 .

[64]  Ladjel Bellatreche,et al.  DWOBS: Data Warehouse Design from Ontology-Based Sources , 2011, DASFAA.