Metal-organic framework materials as catalysts.

A critical review of the emerging field of MOF-based catalysis is presented. Discussed are examples of: (a) opportunistic catalysis with metal nodes, (b) designed catalysis with framework nodes, (c) catalysis by homogeneous catalysts incorporated as framework struts, (d) catalysis by MOF-encapsulated molecular species, (e) catalysis by metal-free organic struts or cavity modifiers, and (f) catalysis by MOF-encapsulated clusters (66 references).

[1]  S. Keller Polyhedron , 2020, Encyclopedia of Database Systems.

[2]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[3]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[4]  V. Narayanan,et al.  Catalytic oxidation of alkenes by manganese(III) porphyrin-encapsulated Al, V, Si-mesoporous molecular sieves , 2009 .

[5]  Abraham M. Shultz,et al.  A catalytically active, permanently microporous MOF with metalloporphyrin struts. , 2009, Journal of the American Chemical Society.

[6]  J. Hupp,et al.  An example of node-based postassembly elaboration of a hydrogen-sorbing, metal-organic framework material. , 2008, Inorganic chemistry.

[7]  Dirk Volkmer,et al.  A Cobalt(II)‐containing Metal‐Organic Framework Showing Catalytic Activity in Oxidation Reactions , 2008 .

[8]  K. Lillerud,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[9]  Omar M. Yaghi,et al.  Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 , 2008 .

[10]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[11]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[12]  N. Maksimchuk,et al.  Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates , 2008 .

[13]  A. Baiker,et al.  Copper-based metal-organic framework for the facile ring-opening of epoxides , 2008 .

[14]  M. Muhler,et al.  Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors : Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis , 2008 .

[15]  D. Farrusseng,et al.  MOFs as acid catalysts with shape selectivity properties , 2008 .

[16]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[17]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[18]  A. Corma,et al.  Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation , 2008 .

[19]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[20]  K. Tamaki,et al.  Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2008, Journal of the American Chemical Society.

[21]  J. Bacsa,et al.  Generation of a solid Brønsted acid site in a chiral framework. , 2008, Chemical communications.

[22]  Srinivas Abbina,et al.  Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives , 2007 .

[23]  C. Hill,et al.  A coordination network that catalyzes O2-based oxidations. , 2007, Journal of the American Chemical Society.

[24]  S. Nguyen,et al.  Bis(catechol)salen]MnIII coordination polymers as support-free heterogeneous asymmetric catalysts for epoxidation , 2007 .

[25]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[26]  D. Dybtsev,et al.  Enantioselective chromatographic resolution and one-pot synthesis of enantiomerically pure sulfoxides over a homochiral Zn-organic framework. , 2007, Journal of the American Chemical Society.

[27]  Alexander M. Spokoyny,et al.  Synthesis and hydrogen sorption properties of carborane based metal-organic framework materials. , 2007, Journal of the American Chemical Society.

[28]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[29]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[30]  H. Hou,et al.  Catalytic applications of CuII-containing MOFs based on N-heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol , 2007 .

[31]  E. Gutiérrez‐Puebla,et al.  Rare earth arenedisulfonate metal-organic frameworks: an approach toward polyhedral diversity and variety of functional compounds. , 2007, Inorganic chemistry.

[32]  Carlo Lamberti,et al.  The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. , 2007, Journal of the American Chemical Society.

[33]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[34]  S. Nguyen,et al.  Supramolecular allosteric cofacial porphyrin complexes. , 2006, Journal of the American Chemical Society.

[35]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[36]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[37]  Hiroaki Sakurai,et al.  Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions. , 2006, Angewandte Chemie.

[38]  S. Kitagawa,et al.  Pore surface engineering of microporous coordination polymers. , 2006, Chemical communications.

[39]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[40]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[41]  J. Hupp,et al.  Better Living Through Nanopore Chemistry , 2005, Science.

[42]  G. Giordano,et al.  Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst. , 2005, Journal of agricultural and food chemistry.

[43]  J. Rocha,et al.  Asymmetric cationic methyl pyridyl and pentafluorophenyl porphyrin encapsulated in zeolites: A cytochrome P-450 model , 2005 .

[44]  J. Hupp,et al.  Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. , 2005, Inorganic chemistry.

[45]  O. R. Nascimento,et al.  Iron porphyrins immobilised on silica surface and encapsulated in silica matrix: a comparison of their catalytic activity in hydrocarbon oxidation , 2005 .

[46]  Scott R. Wilson,et al.  Microporous porphyrin solids. , 2005, Accounts of chemical research.

[47]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[48]  Wenbin Lin,et al.  Molecular building block approaches to chiral porous zirconium phosphonates for asymmetric catalysis , 2004 .

[49]  Amitava Das,et al.  Nonpolymeric hydrogelators derived from trimesic amides , 2004 .

[50]  Susumu Kitagawa,et al.  Immobilization of a metallo schiff base into a microporous coordination polymer. , 2004, Angewandte Chemie.

[51]  Zhen Li,et al.  Preparation and catalysis of DMY and MCM-41 encapsulated cationic Mn(III)–porphyrin complex , 2002 .

[52]  E. Gutiérrez‐Puebla,et al.  In(2)(OH)(3)(BDC)(1.5) (BDC = 1,4-benzendicarboxylate): an In(III) supramolecular 3D framework with catalytic activity. , 2002, Inorganic chemistry.

[53]  Gregory A. Morris,et al.  Enhanced activity of enantioselective (salen)Mn(III) epoxidation catalysts through supramolecular complexation , 2001 .

[54]  Gregory A. Morris,et al.  A general route to pyridine-modified salicylaldehydes via Suzuki coupling , 2001 .

[55]  Y. Iamamoto,et al.  Biomimetical catalytic activity of iron(III) porphyrins encapsulated in the zeolite X , 2000 .

[56]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[57]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[58]  E. Jacobsen,et al.  The Mechanistic Basis for Electronic Effects on Enantioselectivity in the (salen)Mn(III)-Catalyzed Epoxidation Reaction , 1998 .

[59]  T. Katsuki,et al.  Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts , 1995 .

[60]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[61]  J. Sanders,et al.  CATALYTIC ACYL TRANSFER BY A CYCLIC PORPHYRIN TRIMER : EFFICIENT TURNOVER WITHOUT PRODUCT INHIBITION , 1994 .

[62]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[63]  Mark E. Davis NEW VISTAS IN ZEOLITE AND MOLECULAR SIEVE CATALYSIS , 1993 .

[64]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[65]  D. Proserpio,et al.  An Indium Layered MOF as Recyclable Lewis Acid Catalyst , 2008 .

[66]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[67]  D. Mansuy,et al.  Alkane hydroxylation catalyzed by metalloporhyrins : evidence for different active oxygen species with alkylhydroperoxides and iodosobenzene as oxidants. , 1982 .