Classification of complex environments using pixel level fusion of satellite data

[1]  Nan Li,et al.  Optimization Performance Comparison of Three Different Group Intelligence Algorithms on a SVM for Hyperspectral Imagery Classification , 2019, Remote. Sens..

[2]  Vera Andrejchenko,et al.  Decision Fusion Framework for Hyperspectral Image Classification Based on Markov and Conditional Random Fields , 2019, Remote. Sens..

[3]  S. Saravanan,et al.  Utility of Landsat Data for Assessing Mangrove Degradation in Muthupet Lagoon, South India , 2019, Coastal Zone Management.

[4]  Amol D. Vibhute,et al.  Hyperspectral and Multispectral Remote Sensing Data Fusion for Classification of Complex-Mixed Land Features Using SVM , 2018, RTIP2R.

[5]  Amol D. Vibhute,et al.  A Spatial and Spectral Feature Based Approach for Classification of Crops Using Techniques Based on GLCM and SVM , 2018, Lecture Notes in Electrical Engineering.

[6]  Upendra Kumar Rajput,et al.  Comparison of Fusion Techniques for Very High Resolution Data for Extraction of Urban Land-Cover , 2017, Journal of the Indian Society of Remote Sensing.

[7]  M. Mokhtarzadeh,et al.  Comparison of Pixel and Object Oriented Based Classification of Hyperspectral Pansharpened Images , 2017, Journal of the Indian Society of Remote Sensing.

[8]  Guangchun Luo,et al.  Minimum Noise Fraction versus Principal Component Analysis as a Preprocessing Step for Hyperspectral Imagery Denoising , 2016 .

[9]  Katharina Burger,et al.  Digital Analysis Of Remotely Sensed Imagery , 2016 .

[10]  Amol D. Vibhute,et al.  Analysis, Classification, and Estimation of Pattern for Land of Aurangabad Region Using High-Resolution Satellite Image , 2016 .

[11]  Ute Beyer,et al.  Remote Sensing And Image Interpretation , 2016 .

[12]  Amol D. Vibhute,et al.  Hyperspectral imaging data atmospheric correction challenges and solutions using QUAC and FLAASH algorithms , 2015, 2015 International Conference on Man and Machine Interfacing (MAMI).

[13]  Ying Xing,et al.  Automatic Classification of Remote Sensing Images Using Multiple Classifier Systems , 2015 .

[14]  R. Nemani,et al.  MULTI-SENSOR MULTI-RESOLUTION IMAGE FUSION FOR IMPROVED VEGETATION AND URBAN AREA CLASSIFICATION , 2015 .

[15]  Behnaz Bigdeli,et al.  Fusion of hyperspectral and lidar data based on dimension reduction and maximum likelihood , 2015 .

[16]  Huadong Guo,et al.  Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use classification , 2015 .

[17]  Qian Du,et al.  Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Francisco Argüello,et al.  Exploring ELM-based spatial–spectral classification of hyperspectral images , 2014 .

[19]  Jianyu Yang,et al.  Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method , 2013, Math. Comput. Model..

[20]  Harish Bhaskar,et al.  Comparative analysis of pan-sharpening techniques on DubaiSat-1 images , 2013, Proceedings of the 16th International Conference on Information Fusion.

[21]  S. Ashraf,et al.  Image data fusion for the remote sensing of freshwater environments , 2012 .

[22]  George P. Petropoulos,et al.  Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping , 2012, Expert Syst. Appl..

[23]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[24]  Manfred Ehlers,et al.  Multi-sensor image fusion for pansharpening in remote sensing , 2010 .

[25]  Jun Wang,et al.  Remote sensing image classification by the Chaos Genetic Algorithm in monitoring land use changes , 2010, Math. Comput. Model..

[26]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Wei Zheng,et al.  Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. , 2008, International journal of oncology.

[28]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[30]  John P. Kerekes,et al.  Decision Fusion of Hyperspectral and SAR Data for Trafficability Assessment , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[31]  Vassilis Tsagaris,et al.  Multispectral image fusion for improved RGB representation based on perceptual attributes , 2005 .

[32]  Toshiharu Kojima,et al.  Forest type classification using data fusion of multispectral and panchromatic high-resolution satellite imageries , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[33]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Jon Atli Benediktsson,et al.  Classification and feature extraction for remote sensing images from urban areas based on morphological transformations , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .