Phase-Type Representations in Random Walk and Queueing Problems

[1]  S. Asmussen Risk theory in a Markovian environment , 1989 .

[2]  B. Sengupta Markov processes whose steady state distribution is matrix-exponential with an application to the GI/PH/1 queue , 1989, Advances in Applied Probability.

[3]  S. Asmussen Exponential families generated by phase-type distributions and other Markov lifetimes , 1989 .

[4]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[5]  Vaidyanathan Ramaswami,et al.  Nonlinear Matrix Equations in Applied Probability—Solution Techniques and Open Problems , 1988 .

[6]  A. Gut Stopped Random Walks: Limit Theorems and Applications , 1987 .

[7]  V. Ramaswami,et al.  Stationary waiting time distribution in queues with phase type service and in quasi-birth-and-death process , 1985, STOC 1985.

[8]  Søren Asmussen,et al.  Approximations for the probability of ruin within finite time , 1984 .

[9]  T. M. Williams,et al.  Stochastic Storage Processes: Queues, Insurance Risk and Dams , 1981 .

[10]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[11]  Michael Woodroofe,et al.  Repeated likelihood ratio tests , 1979 .

[12]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[13]  Aleksandr Alekseevich Borovkov,et al.  Stochastic processes in queueing theory , 1976 .

[14]  D. Iglehart Random walks with negative drift conditioned to stay positive , 1974, Journal of Applied Probability.

[15]  Allan Gut,et al.  On the Moments and Limit Distributions of Some First Passage Times , 1974 .

[16]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[17]  R. R. Bahadur,et al.  On Deviations of the Sample Mean , 1960 .

[18]  Walter L. Smith On the distribution of queueing times , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .