基于多目标飞蛾算法的电力系统无功优化研究 (Multi-objective Moth-flame Optimization Algorithm Based Optimal Reactive Power Dispatch for Power System)

In v iew o f the increasing pow er energy demand and the draw back o f conventiona l reactive pow er o p tim iza tio n m e thods,how to e ffe c tive ly solve the reactive pow er o p tim iza tio n has become a h o t spot in pow er research. T h is paper proposed a m u lti-o b je c tive m odel o f reactive pow er o p tim iza tio n problem s in pow er system and a m u lti-o b je c tive m othflam e o p tim iza tio n a lg o rith m (M O M F A ) to optim ize problem s w ith m u ltip le ob jectives fo r the f ir s t tim e. A fixed-sized exte rna l a rc h iv e ,g rid and select m echanism are in teg ra ted to the M O M F A fo r m ain ta in in g and im p ro v in g the pareto op­ tim a l so lu tio n s. T he proposed a lg o rith m is com pared w ith tw o w e ll-kn o w n a lg o rith m s on CEC m u lti-o b je c tive op tim iza­ tio n te s t prob lem s. M ore o ve r, the proposed a lg o rith m was sim u la ted in rea l pow er system data and com pared w ith tw o w e ll-kn o w n a lg o rith m s:m u lti-o b je c tive p a rtic le sw arm o p tim iza tio n (M O PSO) and non-dom inated so rtin g genetic algo­ r ith m ve rs ion 2 (N S G A-I I ). T he resu lts dem onstrate th a t the proposed a lg o rith m is o u tpe rfo rm s o th e r a lg o rith m s in reactive pow er o p tim iza tio n.

[1]  Osvaldo R. Saavedra,et al.  Optimal reactive power dispatch using evolutionary computation: extended algorithms , 1999 .

[2]  M. M. Eissa,et al.  A novel approach for optimum number and location of FACTS devices on IEEE-30 bus grid using meta-heuristic basd Harmony Search , 2013, 2013 IEEE International Conference on Smart Energy Grid Engineering (SEGE).

[3]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[4]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[5]  Jhing-Fa Wang,et al.  Design and hardware architectures for dynamic Huffman coding , 1995 .

[6]  Rajendra Akerkar,et al.  Knowledge Based Systems , 2017, Encyclopedia of GIS.

[7]  Ganapati Panda,et al.  Solving multiobjective problems using cat swarm optimization , 2012, Expert Syst. Appl..

[8]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[9]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[10]  J. van Leeuwen,et al.  Evolutionary Multi-Criterion Optimization , 2003, Lecture Notes in Computer Science.

[11]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[12]  Q. H. Wu,et al.  Power system optimal reactive power dispatch using evolutionary programming , 1995 .

[13]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[14]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[15]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[16]  Jim Tørresen,et al.  FPGASort: a high performance sorting architecture exploiting run-time reconfiguration on fpgas for large problem sorting , 2011, FPGA '11.