Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent
暂无分享,去创建一个
[1] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[2] J. Littlewood,et al. Collected Papers of Srinivasa Ramanujan , 1929, Nature.
[3] J. Littlewood,et al. Collected Papers of Srinivasa Ramanujan , 1929, Nature.
[4] Helmut Hasse,et al. Ein Summierungsverfahren für die Riemannsche ζ-Reihe , 1930 .
[5] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[6] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[7] F. Beukers. A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .
[8] Leonard Lewin,et al. Polylogarithms and Associated Functions , 1981 .
[9] J. Milnor. On polylogarithms, Hurwitz zeta functions, and the Kubert identities , 1983 .
[10] B. Berndt. Ramanujan's Notebooks , 1985 .
[11] K. B. Oldham,et al. An Atlas of Functions. , 1988 .
[12] V. Rich. Personal communication , 1989, Nature.
[13] F. Dyson. RAMANUJAN'S NOTEBOOKS Parts I and II , 1990 .
[14] L. Lewin. Structural Properties of Polylogarithms , 1991 .
[15] Jonathan Sondow,et al. Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series , 1994 .
[16] B. Berndt. Ramanujan’s Notebooks: Part V , 1997 .
[17] David Bailey,et al. On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..
[18] P. Hadjicostas. Some Generalizations of Beukers' Integrals , 2002 .
[19] J. Sondow. Criteria for irrationality of Euler’s constant , 2002, math/0209070.
[20] An Infinite Product for e^gamma via Hypergeometric Formulas for Euler's Constant, gamma , 2003, math/0306008.
[21] A conjecture-generalization of Sondow's formula , 2004, math/0405423.
[22] M. Émery. On a multiple harmonic power series , 2004, math/0411267.
[23] R. Chapman. A proof of Hadjicostas's conjecture , 2004, math/0405478.
[24] J. Sondow. Double Integrals for Euler's Constant and In and an Analog of Hadjicostas's Formula , 2002, Am. Math. Mon..
[25] Jonathan Sondow,et al. A Faster Product for π and a New Integral for In , 2005, Am. Math. Mon..
[26] Jonathan Sondow. A Faster Product for $\pi$ and a New Integral for ln $\frac{\pi}{2}$ , 2005 .
[27] J. Borwein,et al. On Two Fundamental Identities For Euler Sums , 2005 .
[28] Christina Goldschmidt,et al. Random Recursive Trees and the Bolthausen-Sznitman Coalesent , 2005, math/0502263.
[29] Steven R. Finch,et al. Mathematical constants , 2005, Encyclopedia of mathematics and its applications.