Simulated Annealing and Genetic Algorithms for the Facility Layout Problem: A Survey

The facility layout problem (FLP) has many practical applications and is known to be NP-hard. During recent decades exact and heuristic approaches have been proposed in the literature to solve FLPs. In this paper we review the most recent developments regardingsimulated annealing and genetic algorithms for solvingfacility layout problems approximately.

[1]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[2]  H. Sherali,et al.  Benders' partitioning scheme applied to a new formulation of the quadratic assignment problem , 1980 .

[3]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[4]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Donald E. Brown,et al.  A parallel heuristic for quadratic assignment problems , 1989, Comput. Oper. Res..

[6]  Panos M. Pardalos,et al.  A Parallel Grasp Implementation for the Quadratic Assignment Problem , 1995 .

[7]  Yong Li Heuristic and exact algorithms for the quadratic assignment problem , 1992 .

[8]  Elwood S. Buffa,et al.  A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities , 1963 .

[9]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[10]  T. L. Ward,et al.  Solving Quadratic Assignment Problems by ‘Simulated Annealing’ , 1987 .

[11]  David Connolly An improved annealing scheme for the QAP , 1990 .

[12]  M. Bazaraa Computerized Layout Design: A Branch and Bound Approach , 1975 .

[13]  R. Burkard,et al.  A heuristic for quadratic Boolean programs with applications to quadratic assignment problems , 1983 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[16]  Lawrence Davis,et al.  Job Shop Scheduling with Genetic Algorithms , 1985, ICGA.

[17]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[18]  Ron Sharpe,et al.  An interactive model for the layout of buildings , 1985 .

[19]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[20]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[21]  Panos M. Pardalos,et al.  SCOOP: Solving Combinatorial Optimization Problems in Parallel , 1996, Solving Combinatorial Optimization Problems in Parallel.

[22]  S. Heragu,et al.  Efficient models for the facility layout problem , 1991 .

[23]  Hironori Hirata,et al.  Genetic simulated annealing for floorplan design , 1993, System Modelling and Optimization.

[24]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Panos M. Pardalos,et al.  Parallel Search for Combinatorial Optimization : Genetic Algorithms , Simulated Annealing , Tabu Search and GRASP ? , 1995 .

[27]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[28]  Yavuz A. Bozer,et al.  An improvement-type layout algorithm for single and multiple-floor facilities , 1994 .

[29]  Andrew Kusiak,et al.  The facility layout problem , 1987 .

[30]  Dirk Van Gucht,et al.  Parallel Genetic Algorithms Applied to the Traveling Salesman Problem , 1991, SIAM J. Optim..

[31]  Panos M. Pardalos,et al.  Parallel computing in nonconvex programming , 1993, Ann. Oper. Res..

[32]  Panos M. Pardalos,et al.  Topics in parallel computing in mathematical programming , 1993, Applied discrete mathematics and theoretical computer science.

[33]  Roberto Battiti,et al.  Parallel biased search for combinatorial optimization: genetic algorithms and TABU , 1992, Microprocess. Microsystems.

[34]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[35]  Leon F. McGinnis,et al.  Facility Layout and Location: An Analytical Approach , 1991 .

[36]  Abdelghani Souilah,et al.  Simulated annealing for manufacturing systems layout design , 1995 .

[37]  S. Sahu,et al.  Multiobjective facility layout using simulated annealing , 1993 .

[38]  John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications, July 24-26, 1985, at the Carnegie-Mellon University, Pittsburgh, PA , 1988 .

[39]  Scott Robert Ladd,et al.  Genetic algorithms in C , 1995 .

[40]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[41]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[42]  G. Hogg,et al.  SHAPE: a construction algorithm for area placement evaluation , 1986 .

[43]  George Harhalakis,et al.  CLASS: Computerized LAyout Solutions using Simulated annealing , 1992 .

[44]  Thomas E. Vollmann,et al.  An Experimental Comparison of Techniques for the Assignment of Facilities to Locations , 1968, Oper. Res..

[45]  Per S. Laursen Simulated annealing for the QAP. Optimal tradeoff between simulation time and solution quality , 1993 .

[46]  Yavuz A. Bozer,et al.  A new simulated annealing algorithm for the facility layout problem , 1996 .

[47]  Panos M. Pardalos,et al.  Computational Experience with Parallel Algorithms for solving the quadratic Assignment Problem , 1992, Computer Science and Operations Research.

[48]  A. Alfa,et al.  Experimental analysis of simulated annealing based algorithms for the layout problem , 1992 .

[49]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[50]  E. Lawler The Quadratic Assignment Problem , 1963 .

[51]  Panos M. Pardalos,et al.  Parallel Processing of Discrete Optimization Problems , 1995 .

[52]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[53]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[54]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[55]  D. Camp,et al.  A nonlinear optimization approach for solving facility layout problems , 1992 .

[56]  Alice E. Smith,et al.  Unequal-area facility layout by genetic search , 1995 .

[57]  G. Thompson,et al.  An exact algorithm for the general quadratic assignment problem , 1986 .

[58]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[59]  P. Banerjee,et al.  Facilities layout design optimization with single loop material flow path configuration , 1995 .

[60]  K. Y. Tam,et al.  Genetic algorithms, function optimization, and facility layout design , 1992 .

[61]  R Sharpe,et al.  Facility Layout Optimization Using the Metropolis Algorithm , 1985 .

[62]  Wen-Chyuan Chiang,et al.  A simulated annealing procedure for single row layout problems in flexible manufacturing systems , 1992 .

[63]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[64]  Wen-Chyuan Chiang,et al.  Simulated annealing for machine layout problems in the presence of zoning constraints , 1992 .

[65]  B. Golden,et al.  Using simulated annealing to solve routing and location problems , 1986 .

[66]  K. Y. Tam,et al.  A simulated annealing algorithm for allocating space to manufacturing cells , 1992 .

[67]  Athanassios Siapas,et al.  Criticality and Parallelism in Combinatorial Optimization , 1996, Science.