On pseudorandom [0, 1 and binary sequences

Abstract. This paper studies links between uniform pseudorandom sequences of real numbers in [0, 1) and pseudorandom binary sequences. It is proved that good pseudorandom [0, 1) sequences induce binary sequences that have small correlation and well-distribution measures. On the other hand, given a binary sequence with small combined well-distribution-correlation measure, it is shown how to construct a [0, 1) sequence with small discrepancy. The special cases of linear congruential pseudorandom sequences and of Legendre symbol sequences are analyzed in more detail.

[1]  Harald Niederreiter,et al.  Some Computable Complexity Measures for Binary Sequences , 1998, SETA.

[2]  N. M. Korobov Exponential Sums and their Applications , 1992 .

[3]  G. Marsaglia The Structure of Linear Congruential Sequences , 1972 .

[4]  Igor E. Shparlinski,et al.  Recent Advances in the Theory of Nonlinear Pseudorandom Number Generators , 2002 .

[5]  Christian Mauduit,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[6]  András Sárközy,et al.  Construction of pseudorandom binary sequences by using the multiplicative inverse , 2005 .

[7]  W. Banks,et al.  Exponential sums over Mersenne numbers , 2004, Compositio Mathematica.

[8]  H. Niederreiter Pseudo-random numbers and optimal coefficients☆ , 1977 .

[9]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[10]  András Sárközy,et al.  A finite pseudorandom binary sequence , 2001 .

[11]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[12]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[13]  András Sárközy,et al.  Construction of Pseudorandom Binary Sequences Using Additive Characters , 2004 .

[14]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[15]  Harald Niederreiter,et al.  New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .

[16]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[17]  Rudolf Ahlswede,et al.  On the correlation of binary sequences , 2005, Electron. Notes Discret. Math..

[18]  Gustavus J. Simmons,et al.  Contemporary Cryptology: The Science of Information Integrity , 1994 .

[19]  Yoshiharu Kohayakawa,et al.  Measures of pseudorandomness for finite sequences: typical values , 2007 .

[20]  Harald Niederreiter The serial test for pseudo-random numbers generated by the linear congruential method , 1985 .

[21]  Fred Piper,et al.  Stream Ciphers , 1982, EUROCRYPT.

[22]  András Sárközy,et al.  Construction of large families of pseudorandom binary sequences , 2004 .

[23]  András Sárközy,et al.  On finite pseudorandom binary sequences VII: The measures of pseudorandomness , 2002 .

[24]  András Sárközy,et al.  On the measures of pseudorandomness of binary sequences , 2003, Discret. Math..