MCMC Sampler Convergence Rates for Hierarchical Normal Linear Models: A Simulation Approach

This paper presents a straightforward method of approximating theoretical bounds on burn-in time for MCMC samplers for hierarchical normal linear models. An extension and refinement of Cowles and Rosenthal's (1998) simulation approach, it exploits Hodges's (1998) reformulation of hierarchical normal linear models. The method is illustrated with three real datasets, involving a one-way variance components model, a growth-curve model, and a spatial model with a pairwise-differences prior. In all three cases, when the specified priors produce proper, unimodal posterior distributions, the method provides very reasonable upper bounds on burn-in time. In contrast, when the posterior distribution for the variance-components model can be shown to be improper or bimodal, the new method correctly identifies convergence failure while several other commonly-used diagnostics provide false assurance that convergence has occurred.

[1]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[2]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[3]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[4]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[5]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[6]  Mary Kathryn Cowles,et al.  A simulation approach to convergence rates for Markov chain Monte Carlo algorithms , 1998, Stat. Comput..

[7]  J. Bernardo,et al.  Exact sampling for Bayesian inference : towards general purpose algorithms , 1998 .

[8]  Walter R. Gilks,et al.  BUGS - Bayesian inference Using Gibbs Sampling Version 0.50 , 1995 .

[9]  Gareth O. Roberts,et al.  Corrigendum to : Bounds on regeneration times and convergence rates for Markov chains , 2001 .

[10]  J. Rosenthal,et al.  Possible biases induced by MCMC convergence diagnostics , 1999 .

[11]  Peter R. Nelson,et al.  Design and Analysis of Experiments, 3rd Ed. , 1991 .

[12]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[13]  Bradley P. Carlin,et al.  Structured Markov Chain Monte Carlo , 2000 .

[14]  Julian Besag,et al.  Statistical Analysis of Field Experiments Using Neighbouring Plots , 1986 .

[15]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[16]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[17]  V. Johnson A Coupling-Regeneration Scheme for Diagnosing Convergence in Markov Chain Monte Carlo Algorithms , 1998 .

[18]  David R. Cox,et al.  Some algebra and geometry for hierarchical models, applied to diagnostics , 1998 .

[19]  J. Hodges,et al.  Posterior bimodality in the balanced one‐way random‐effects model , 2003 .

[20]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[21]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[22]  J. Besag,et al.  Bayesian analysis of agricultural field experiments , 1999 .

[23]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .