On the Reliability Function of Distributed Hypothesis Testing Under Optimal Detection

The distributed hypothesis-testing problem with full side-information is studied. The trade-off (reliability function) between the type 1 and type 2 error exponents under limited rate is studied in the following way. First, the problem of determining the reliability function of distributed hypothesis-testing is reduced to the problem of determining the reliability function of channel-detection codes (in analogy to a similar result which connects the reliability of distributed compression and ordinary channel codes). Second, a random-coding bound based on an hierarchical ensemble, as well as an expurgated bound, are derived for the reliability of channel-detection codes. The resulting bounds are the first to be derived for quantization-and-binning schemes under optimal detection.

[1]  Yuval Kochman,et al.  On the Reliability Function of Distributed Hypothesis Testing Under Optimal Detection , 2019, IEEE Transactions on Information Theory.

[2]  Gregory W. Wornell,et al.  Communication Under Strong Asynchronism , 2007, IEEE Transactions on Information Theory.

[3]  Neri Merhav,et al.  Optimum Tradeoffs Between the Error Exponent and the Excess-Rate Exponent of Variable-Rate Slepian–Wolf Coding , 2015, IEEE Transactions on Information Theory.

[4]  S. Amari,et al.  Error bound of hypothesis testing with data compression , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[5]  W. Rudin Principles of mathematical analysis , 1964 .

[6]  Michèle Wigger,et al.  On Hypothesis Testing Against Conditional Independence With Multiple Decision Centers , 2018, IEEE Transactions on Communications.

[7]  Katalin Marton,et al.  Error exponent for source coding with a fidelity criterion , 1974, IEEE Trans. Inf. Theory.

[8]  Yu Xiang,et al.  Interactive hypothesis testing against independence , 2013, 2013 IEEE International Symposium on Information Theory.

[9]  Richard E. Blahut,et al.  Hypothesis testing and information theory , 1974, IEEE Trans. Inf. Theory.

[10]  Mérouane Debbah,et al.  On the necessity of binning for the distributed hypothesis testing problem , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[11]  Te Han,et al.  Hypothesis testing with multiterminal data compression , 1987, IEEE Trans. Inf. Theory.

[12]  Achilleas Anastasopoulos,et al.  Error Exponent for Multiple Access Channels: Upper Bounds , 2015, IEEE Transactions on Information Theory.

[13]  Imre Csiszár,et al.  Graph decomposition: A new key to coding theorems , 1981, IEEE Trans. Inf. Theory.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  P. Gács,et al.  Bounds on conditional probabilities with applications in multi-user communication , 1976 .

[16]  Suguru Arimoto Computation of random coding exponent functions , 1976, IEEE Trans. Inf. Theory.

[17]  Neri Merhav,et al.  Achievable Error Exponents for the Private Fingerprinting Game , 2007, IEEE Transactions on Information Theory.

[18]  W. Hoeffding Asymptotically Optimal Tests for Multinomial Distributions , 1965 .

[19]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[20]  Mérouane Debbah,et al.  Distributed Binary Detection With Lossy Data Compression , 2016, IEEE Transactions on Information Theory.

[21]  Eli Haim,et al.  On Binary Distributed Hypothesis Testing , 2017, ArXiv.

[22]  Yury Polyanskiy,et al.  Hypothesis testing via a comparator , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[23]  Shun-ichi Amari,et al.  Statistical Inference Under Multiterminal Data Compression , 1998, IEEE Trans. Inf. Theory.

[24]  Ertem Tuncel,et al.  On error exponents in hypothesis testing , 2005, IEEE Transactions on Information Theory.

[25]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[26]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[27]  Michel Loève,et al.  Probability Theory I , 1977 .

[28]  Chao Tian,et al.  Successive Refinement for Hypothesis Testing and Lossless One-Helper Problem , 2008, IEEE Transactions on Information Theory.

[29]  Eli Haim,et al.  Binary distributed hypothesis testing via Körner-Marton coding , 2016, 2016 IEEE Information Theory Workshop (ITW).

[30]  A. Rényi On Measures of Entropy and Information , 1961 .

[31]  Aaron B. Wagner,et al.  Optimality of binning for distributed hypothesis testing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[32]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[33]  Mérouane Debbah,et al.  Collaborative Distributed Hypothesis Testing , 2016, ArXiv.

[34]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[35]  H. Vincent Poor,et al.  An introduction to signal detection and estimation (2nd ed.) , 1994 .

[36]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[37]  Neri Merhav,et al.  A Large Deviations Approach to Secure Lossy Compression , 2017, IEEE Trans. Inf. Theory.

[38]  Neri Merhav,et al.  Relations Between Random Coding Exponents and the Statistical Physics of Random Codes , 2007, IEEE Transactions on Information Theory.

[39]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[40]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[41]  Neri Merhav,et al.  Statistical Physics and Information Theory , 2010, Found. Trends Commun. Inf. Theory.

[42]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[43]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[44]  Nadav Shulman,et al.  Communication over an unknown channel via common broadcasting , 2003 .

[45]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[46]  Rudolf Ahlswede,et al.  Good codes can be produced by a few permutations , 1982, IEEE Trans. Inf. Theory.

[47]  Michele A. Wigger,et al.  On Hypothesis Testing Against Independence with Multiple Decision Centers , 2017, ArXiv.

[48]  Neri Merhav,et al.  Codeword or Noise? Exact Random Coding Exponents for Joint Detection and Decoding , 2014, IEEE Transactions on Information Theory.

[49]  Pablo Piantanida,et al.  A new approach to distributed hypothesis testing , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[50]  Rudolf Ahlswede,et al.  Hypothesis testing with communication constraints , 1986, IEEE Trans. Inf. Theory.

[51]  Neri Merhav,et al.  Channel Detection in Coded Communication , 2015, IEEE Transactions on Information Theory.

[52]  Hossam M. H. Shalaby,et al.  Multiterminal detection with zero-rate data compression , 1992, IEEE Trans. Inf. Theory.

[53]  M. Sion On general minimax theorems , 1958 .

[54]  Ligong Wang,et al.  Hypothesis Testing In Multi-Hop Networks , 2017, ArXiv.

[55]  Jun Chen,et al.  On the Reliability Function of Variable-Rate Slepian-Wolf Coding , 2017, Entropy.

[56]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[57]  Te Sun Han,et al.  Exponential-type error probabilities for multiterminal hypothesis testing , 1989, IEEE Trans. Inf. Theory.

[58]  Rudolf Ahlswede,et al.  Coloring hypergraphs: A new approach to multi-user source coding, 1 , 1979 .

[59]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[60]  Shun Watanabe,et al.  Neyman-Pearson test for zero-rate multiterminal hypothesis testing , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[61]  Deniz Gündüz,et al.  Distributed hypothesis testing over noisy channels , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[62]  Imre Csiszár,et al.  Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.

[63]  O. F. Cook The Method of Types , 1898 .

[64]  Lifeng Lai,et al.  Distributed testing with zero-rate compression , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[65]  Sae-Young Chung,et al.  Error exponents in asynchronous communication , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[66]  Pablo Piantanida,et al.  On secure distributed hypothesis testing , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[67]  Imre Csisźar,et al.  The Method of Types , 1998, IEEE Trans. Inf. Theory.

[68]  Imre Csiszár,et al.  Towards a general theory of source networks , 1980, IEEE Trans. Inf. Theory.