Vers des interfaces cérébrales adaptées aux utilisateurs : interaction robuste et apprentissage statistique basé sur la géométrie riemannienne. (Toward user-adapted brain computer interfaces : robust interaction and machine learning based on riemannian geometry)

Au cours des deux dernieres decennies, l'interet porte aux interfaces cerebrales ou Brain Computer Interfaces (BCI) s’est considerablement accru, avec un nombre croissant de laboratoires de recherche travaillant sur le sujet. Depuis le projet Brain Computer Interface, ou la BCI a ete presentee a des fins de readaptation et d'assistance, l'utilisation de la BCI a ete etendue a d'autres applications telles que le neurofeedback et l’industrie du jeux video. Ce progres a ete realise grâce a une meilleure comprehension de l'electroencephalographie (EEG), une amelioration des systemes d’enregistrement du EEG, et une augmentation de puissance de calcul.Malgre son potentiel, la technologie de la BCI n’est pas encore mature et ne peut etre utilise en dehors des laboratoires. Il y a un tas de defis qui doivent etre surmontes avant que les systemes BCI puissent etre utilises a leur plein potentiel. Ce travail porte sur des aspects importants de ces defis, a savoir la specificite des systemes BCI aux capacites physiques des utilisateurs, la robustesse de la representation et de l'apprentissage du EEG, ainsi que la suffisance des donnees d’entrainement. L'objectif est de fournir un systeme BCI qui peut s’adapter aux utilisateurs en fonction de leurs capacites physiques et des variabilites dans les signaux du cerveau enregistres.A ces fins, deux voies principales sont explorees : la premiere, qui peut etre consideree comme un ajustement de haut niveau, est un changement de paradigmes BCI. Elle porte sur la creation de nouveaux paradigmes qui peuvent augmenter les performances de la BCI, alleger l'inconfort de l'utilisation de ces systemes, et s’adapter aux besoins des utilisateurs. La deuxieme voie, consideree comme une solution de bas niveau, porte sur l’amelioration des techniques de traitement du signal et d’apprentissage statistique pour ameliorer la qualite du signal EEG, la reconnaissance des formes, ainsi que la tache de classification.D'une part, une nouvelle methodologie dans le contexte de la robotique d'assistance est definie : il s’agit d’une approche hybride ou une interface physique est complementee par une interface cerebrale pour une interaction homme-machine plus fluide. Ce systeme hybride utilise les capacites motrices residuelles des utilisateurs et offre la BCI comme un choix optionnel : l'utilisateur choisit quand utiliser la BCI et peut alterner entre les interfaces cerebrales et musculaire selon le besoin.D'autre part, pour l’amelioration des techniques de traitement du signal et d'apprentissage statistique, ce travail utilise un cadre Riemannien. Un frein majeur dans le domaine de la BCI est la faible resolution spatiale du EEG. Ce probleme est du a l'effet de conductance des os du crâne qui agissent comme un filtre passe-bas non lineaire, en melangeant les signaux de differentes sources du cerveau et reduisant ainsi le rapport signal-a-bruit. Par consequent, les methodes de filtrage spatial ont ete developpees ou adaptees. La plupart d'entre elles – a savoir la Common Spatial Pattern (CSP), la xDAWN et la Canonical Correlation Analysis (CCA) – sont basees sur des estimations de matrice de covariance. Les matrices de covariance sont essentielles dans la representation d’information contenue dans le signal EEG et constituent un element important dans leur classification. Dans la plupart des algorithmes d'apprentissage statistique existants, les matrices de covariance sont traitees comme des elements de l'espace euclidien. Cependant, etant symetrique et defini positive (SDP), les matrices de covariance sont situees dans un espace courbe qui est identifie comme une variete riemannienne. Utiliser les matrices de covariance comme caracteristique pour la classification des signaux EEG, et les manipuler avec les outils fournis par la geometrie de Riemann, fournit un cadre solide pour la representation et l'apprentissage du EEG.

[1]  E. John,et al.  Evoked-Potential Correlates of Stimulus Uncertainty , 1965, Science.

[2]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[3]  Xiaorong Gao,et al.  Frequency and Phase Mixed Coding in SSVEP-Based Brain--Computer Interface , 2011, IEEE Transactions on Biomedical Engineering.

[4]  S. M. Williams,et al.  Excitatory and Inhibitory Postsynaptic Potentials , 2001 .

[5]  Shuo Yang,et al.  Motor Imagery BCI Research Based on Hilbert-Huang Transform and Genetic Algorithm , 2011, 2011 5th International Conference on Bioinformatics and Biomedical Engineering.

[6]  Jonathan R Wolpaw,et al.  Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Maher Moakher,et al.  Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function , 2012 .

[8]  Dana H. Ballard,et al.  Single Trial P300 Recognition in a Virtual Environment , 1998 .

[9]  Marco Congedo,et al.  EEG Source Analysis , 2013 .

[10]  Maureen Clerc,et al.  Electroencephalography (EEG)‐Based Brain–Computer Interfaces , 2015 .

[11]  K. Müller,et al.  Psychological predictors of SMR-BCI performance , 2012, Biological Psychology.

[12]  P. Tibbetts :Cognitive Neuroscience: The Biology of the Mind , 2009 .

[13]  S. P. Levine,et al.  Detection of event-related potentials for development of a direct brain interface. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[14]  Soo-Young Lee,et al.  Brain–computer interface using fMRI: spatial navigation by thoughts , 2004, Neuroreport.

[15]  U. Hoffmann,et al.  A Boosting Approach to P300 Detection with Application to Brain-Computer Interfaces , 2005, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005..

[16]  José del R. Millán,et al.  Simultaneous Real-Time Detection of Motor Imagery and Error-Related Potentials for Improved BCI Accuracy , 2008 .

[17]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[18]  Frederic Barbaresco Geometric Radar Processing based on Fréchet distance: Information geometry versus Optimal Transport Theory , 2011, 2011 12th International Radar Symposium (IRS).

[19]  Emmanuel K. Kalunga,et al.  From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification , 2015, GSI.

[20]  C. Neuper,et al.  Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges , 2010, Front. Neurosci..

[21]  Suogang Wang,et al.  Enhancing Evoked Responses for BCI Through Advanced ICA Techniques , 2006 .

[22]  E Donchin,et al.  Discriminant analysis in average evoked response studies: the study of single trial data. , 1969, Electroencephalography and clinical neurophysiology.

[23]  Han-Pang Huang,et al.  Novel feature of the EEG based motor imagery BCI system: Degree of imagery , 2011, Proceedings 2011 International Conference on System Science and Engineering.

[24]  A. Kübler,et al.  Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease , 2013, Clinical Neurophysiology.

[25]  Eric Monacelli,et al.  Force controlled upper-limb powered exoskeleton for rehabilitation , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Kon Max Wong,et al.  Electroencephalogram signals classification for sleep-state decision - a Riemannian geometry approach , 2012, IET Signal Process..

[27]  Alexandre Barachant,et al.  A New Generation of Brain-Computer Interface Based on Riemannian Geometry , 2013, ArXiv.

[28]  Christian Jutten,et al.  Riemannian Geometry Applied to BCI Classification , 2010, LVA/ICA.

[29]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[30]  Y. Lim,et al.  Matrix power means and the Karcher mean , 2012 .

[31]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H G Vaughan,et al.  Averaged Evoked Responses in Vigilance and Discrimination: A Reassessment , 1969, Science.

[33]  Yuting Zhang,et al.  Classification of EEG signals based on AR model and approximate entropy , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[34]  Christian Jutten,et al.  Common Spatial Pattern revisited by Riemannian geometry , 2010, 2010 IEEE International Workshop on Multimedia Signal Processing.

[35]  Wojciech Samek,et al.  Information geometry meets BCI spatial filtering using divergences , 2014, 2014 International Winter Workshop on Brain-Computer Interface (BCI).

[36]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[37]  Sheng-Fu Liang,et al.  A closed-loop brain computer interface for real-time seizure detection and control , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[38]  M Congedo,et al.  sw-SVM: sensor weighting support vector machines for EEG-based brain–computer interfaces , 2011, Journal of neural engineering.

[39]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[40]  Mark L. Homer,et al.  Sensors and decoding for intracortical brain computer interfaces. , 2013, Annual review of biomedical engineering.

[41]  Frank Nielsen,et al.  On Clustering Histograms with k-Means by Using Mixed α-Divergences , 2014, Entropy.

[42]  Matthias M. Müller,et al.  Processing of affective pictures modulates right-hemispheric gamma band EEG activity , 1999, Clinical Neurophysiology.

[43]  G Pfurtscheller,et al.  Self-initiation of EEG-based brain-computer communication using the heart rate response. , 2007, Journal of neural engineering.

[44]  E Donchin,et al.  The mental prosthesis: assessing the speed of a P300-based brain-computer interface. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[45]  A. Cichocki,et al.  Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives , 2010, Progress in Neurobiology.

[46]  M S Treder,et al.  Gaze-independent brain–computer interfaces based on covert attention and feature attention , 2011, Journal of neural engineering.

[47]  Isabelle Bloch,et al.  Time-frequency optimization for discrimination between imagination of right and left hand movements based on two bipolar electroencephalography channels , 2014, EURASIP Journal on Advances in Signal Processing.

[48]  Fabien Lotte Generating Artificial EEG Signals To Reduce BCI Calibration Time , 2011 .

[49]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[50]  Benjamin Schrauwen,et al.  Dynamic Stopping Improves the Speed and Accuracy of a P300 Speller , 2012, ICANN.

[51]  N Birbaumer,et al.  Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients , 2014, Journal of neural engineering.

[52]  Chi-Kwong Li Geometric Means , 2003 .

[53]  Xiaorong Gao,et al.  An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method , 2009, Journal of neural engineering.

[54]  Byron M. Yu,et al.  A high-performance brain–computer interface , 2006, Nature.

[55]  C. Villani Optimal Transport: Old and New , 2008 .

[56]  I. Pisotta,et al.  Psychosocial and Ethical Aspects in Non-Invasive EEG-Based BCI Research—A Survey Among BCI Users and BCI Professionals , 2014 .

[57]  G. Schalk,et al.  ECoG factors underlying multimodal control of a brain-computer interface , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[58]  Nicholas G. Hatsopoulos,et al.  Brain-machine interface: Instant neural control of a movement signal , 2002, Nature.

[59]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[60]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[61]  Yijun Wang,et al.  A high-speed BCI based on code modulation VEP , 2011, Journal of neural engineering.

[62]  M. Congedo,et al.  The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry , 2013 .

[63]  Moritz Grosse-Wentrup,et al.  Multiclass Common Spatial Patterns and Information Theoretic Feature Extraction , 2008, IEEE Transactions on Biomedical Engineering.

[64]  Ritva Paetau,et al.  Magnetoencephalography in pediatric neuroimaging , 2002 .

[65]  T W Picton,et al.  Temporal and sequential probability in evoked potential studies. , 1981, Canadian journal of psychology.

[66]  C. Bédard,et al.  Model of low-pass filtering of local field potentials in brain tissue. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  J. Wolpaw,et al.  A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance , 2006, Biological Psychology.

[68]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[69]  Alexandre Barachant,et al.  A Plug&Play P300 BCI Using Information Geometry , 2014, ArXiv.

[70]  Toshihisa Tanaka,et al.  SSVEP-Based Brain–Computer Interfaces Using FSK-Modulated Visual Stimuli , 2013, IEEE Transactions on Biomedical Engineering.

[71]  Christa Neuper,et al.  Hidden Markov models for online classification of single trial EEG data , 2001, Pattern Recognit. Lett..

[72]  S. Bonnet,et al.  Channel selection procedure using riemannian distance for BCI applications , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[73]  N. Gursel Ozmen,et al.  Discrimination between mental and motor tasks of EEG signals using different classification methods , 2011, 2011 International Symposium on Innovations in Intelligent Systems and Applications.

[74]  J J Vidal,et al.  Toward direct brain-computer communication. , 1973, Annual review of biophysics and bioengineering.

[75]  René Vidal,et al.  Unsupervised Riemannian Clustering of Probability Density Functions , 2008, ECML/PKDD.

[76]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[77]  Cuntai Guan,et al.  BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection , 2012, Front. Neurosci..

[78]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b , 2012, Front. Neurosci..

[79]  Wei Wu,et al.  Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs , 2006, IEEE Transactions on Biomedical Engineering.

[80]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[81]  S. Sra Positive definite matrices and the S-divergence , 2011, 1110.1773.

[82]  Karl J. Friston,et al.  A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration , 2011, Front. Hum. Neurosci..

[83]  Christian Jutten,et al.  Classification of covariance matrices using a Riemannian-based kernel for BCI applications , 2013, Neurocomputing.

[84]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[85]  Robert J. K. Jacob,et al.  Designing a passive brain computer interface using real time classification of functional near-infrared spectroscopy , 2013, Int. J. Auton. Adapt. Commun. Syst..

[86]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[87]  Philippe Forster,et al.  Theoretical analysis of an improved covariance matrix estimator in non-Gaussian noise [radar detection applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[88]  G. Pfurtscheller,et al.  On the existence of different types of central beta rhythms below 30 Hz. , 1997, Electroencephalography and clinical neurophysiology.

[89]  P.R. Kennedy,et al.  Computer control using human intracortical local field potentials , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[90]  G. Pfurtscheller,et al.  Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man , 1994, Neuroscience Letters.

[91]  Niels Birbaumer,et al.  fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment , 2007, Comput. Intell. Neurosci..

[92]  Bao-Liang Lu,et al.  Emotion classification based on gamma-band EEG , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[93]  Ronald M. Aarts,et al.  A Survey of Stimulation Methods Used in SSVEP-Based BCIs , 2010, Comput. Intell. Neurosci..

[94]  Jun Lu,et al.  A review on transfer learning for brain-computer interface classification , 2015, 2015 5th International Conference on Information Science and Technology (ICIST).

[95]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[96]  Rabab K Ward,et al.  A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals , 2007, Journal of neural engineering.

[97]  Fanglin Chen,et al.  A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm , 2013, Journal of neural engineering.

[98]  Christian Jutten,et al.  BCI Signal Classification using a Riemannian-based kernel , 2012, ESANN.

[99]  Hongdong Li,et al.  Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[100]  Frank Nielsen,et al.  Matrix Information Geometry , 2012 .

[101]  René J. Huster,et al.  Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions. , 2014, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[102]  S. Coyle,et al.  Brain–computer interfaces: a review , 2003 .

[103]  Emmanuel Maby,et al.  Objective and Subjective Evaluation of Online Error Correction during P300-Based Spelling , 2012, Adv. Hum. Comput. Interact..

[104]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[105]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[106]  Christoph Braun,et al.  A portable auditory P300 brain–computer interface with directional cues , 2013, Clinical Neurophysiology.

[107]  Anatole Lécuyer,et al.  Exploring Large Virtual Environments by Thoughts Using a BrainComputer Interface Based on Motor Imagery and High-Level Commands , 2010, PRESENCE: Teleoperators and Virtual Environments.

[108]  Benjamin Blankertz,et al.  Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP) , 2013, Clinical Neurophysiology.

[109]  F. Cincotti,et al.  Comparison of different feature classifiers for brain computer interfaces , 2003, First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings..

[110]  S. Silvoni,et al.  Brain-Computer Interface in Stroke: A Review of Progress , 2011, Clinical EEG and neuroscience.

[111]  O Bertrand,et al.  A robust sensor-selection method for P300 brain–computer interfaces , 2011, Journal of neural engineering.

[112]  Anil K. Jain,et al.  Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Daniel Afergan,et al.  Implicit Brain-Computer Interaction Applied to a Novel Adaptive Musical Interface , 2015 .

[114]  Helge J. Ritter,et al.  A hybrid brain interface for a humanoid robot assistant , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[115]  J. Friedman Regularized Discriminant Analysis , 1989 .

[116]  Sylvain Chevallier,et al.  Fast calibration of hand movements-based interface for arm exoskeleton control , 2012, ESANN.

[117]  Florian Yger,et al.  A review of kernels on covariance matrices for BCI applications , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[118]  Ying Sun,et al.  Adaptation in P300 Brain–Computer Interfaces: A Two-Classifier Cotraining Approach , 2010, IEEE Transactions on Biomedical Engineering.

[119]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[120]  G. Schalk,et al.  Brain-Computer Interfaces Using Electrocorticographic Signals , 2011, IEEE Reviews in Biomedical Engineering.

[121]  Robin C. Ashmore,et al.  An Electrocorticographic Brain Interface in an Individual with Tetraplegia , 2013, PloS one.

[122]  Xiaorong Gao,et al.  Design and implementation of a brain-computer interface with high transfer rates , 2002, IEEE Transactions on Biomedical Engineering.

[123]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[124]  J. W. Minett,et al.  Optimizing the P300-based brain–computer interface: current status, limitations and future directions , 2011, Journal of neural engineering.

[125]  Kwee-Bo Sim,et al.  Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system , 2014 .

[126]  Touradj Ebrahimi,et al.  An efficient P300-based brain–computer interface for disabled subjects , 2008, Journal of Neuroscience Methods.

[127]  Clemens Brunner,et al.  Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis , 2007, Pattern Recognit. Lett..

[128]  Mahmut Tokmakci,et al.  The Effect of Duty Cycle and Brightness Variation of Visual Stimuli on SSVEP in Brain Computer Interface Systems , 2016 .

[129]  Seungjin Choi,et al.  Composite Common Spatial Pattern for Subject-to-Subject Transfer , 2009, IEEE Signal Processing Letters.

[130]  A. Routray,et al.  Design of Support Vector Machines with Time Frequency Kernels for classification of EEG signals , 2010, 2010 IEEE Students Technology Symposium (TechSym).

[131]  P. Kennedy,et al.  Restoration of neural output from a paralyzed patient by a direct brain connection , 1998, Neuroreport.

[132]  Alain Rakotomamonjy,et al.  Ensemble of SVMs for Improving Brain Computer Interface P300 Speller Performances , 2005, ICANN.

[133]  Frank Nielsen,et al.  Sided and Symmetrized Bregman Centroids , 2009, IEEE Transactions on Information Theory.

[134]  Emmanuel K. Kalunga,et al.  Data augmentation in Riemannian space for Brain-Computer Interfaces , 2015 .

[135]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[136]  D. Meyer,et al.  A Neural System for Error Detection and Compensation , 1993 .

[137]  G. McArthur,et al.  Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs , 2013, PeerJ.

[138]  G. Pfurtscheller,et al.  Self-Paced Operation of an SSVEP-Based Orthosis With and Without an Imagery-Based “Brain Switch:” A Feasibility Study Towards a Hybrid BCI , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[139]  Christian Kothe,et al.  Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general , 2011, Journal of neural engineering.

[140]  Edward Cutrell,et al.  BCI for passive input in HCI , 2007 .

[141]  Guillaume Gibert,et al.  xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain–Computer Interface , 2009, IEEE Transactions on Biomedical Engineering.

[142]  Inderjit S. Dhillon,et al.  Matrix Nearness Problems with Bregman Divergences , 2007, SIAM J. Matrix Anal. Appl..

[143]  José del R. Millán,et al.  Error-Related EEG Potentials Generated During Simulated Brain–Computer Interaction , 2008, IEEE Transactions on Biomedical Engineering.

[144]  Marina Schmid,et al.  An Introduction To The Event Related Potential Technique , 2016 .

[145]  Xiaorong Gao,et al.  Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis , 2011, Journal of neural engineering.

[146]  R. Aslin,et al.  Developmental Cognitive Neuroscience Near-infrared Spectroscopy: a Report from the Mcdonnell Infant Methodology Consortium , 2022 .

[147]  Gert Pfurtscheller,et al.  Motor imagery and direct brain-computer communication , 2001, Proc. IEEE.

[148]  S. Herculano‐Houzel The Human Brain in Numbers: A Linearly Scaled-up Primate Brain , 2009, Front. Hum. Neurosci..

[149]  M. Pencina,et al.  Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond , 2008, Statistics in medicine.

[150]  D. P. Mandic,et al.  The In-the-Ear Recording Concept: User-Centered and Wearable Brain Monitoring , 2012, IEEE Pulse.

[151]  Alice Mado Proverbio,et al.  Electromagnetic Manifestations of Mind and Brain , 2003 .

[152]  G. Pfurtscheller,et al.  Event-related cortical desynchronization detected by power measurements of scalp EEG. , 1977, Electroencephalography and clinical neurophysiology.

[153]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[154]  E. Courchesne,et al.  Stimulus novelty, task relevance and the visual evoked potential in man. , 1975, Electroencephalography and clinical neurophysiology.

[155]  Yijun Wang,et al.  Improving Brain–Computer Interfaces Using Independent Component Analysis , 2012 .

[156]  Hui Wang,et al.  An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[157]  Xi Chen,et al.  Feature extraction of motor imagery EEG signals based on wavelet packet decomposition , 2011, The 2011 IEEE/ICME International Conference on Complex Medical Engineering.

[158]  Takanori Sato,et al.  Classification of functional near-infrared spectroscopy signals applying reduction of scalp hemodynamic artifact , 2014, 2014 UKACC International Conference on Control (CONTROL).

[159]  P. Matthews,et al.  Functional magnetic resonance imaging. , 2004, Journal of neurology, neurosurgery, and psychiatry.

[160]  Jennifer L. Collinger,et al.  MEG-based neurofeedback for hand rehabilitation , 2015, Journal of NeuroEngineering and Rehabilitation.

[161]  Fabien Lotte,et al.  Brain-Computer Interfaces: Beyond Medical Applications , 2012, Computer.

[162]  T. N. Lal,et al.  Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[163]  Farhad Faradji,et al.  A brain-computer interface based on mental tasks with a zero false activation rate , 2009, 2009 4th International IEEE/EMBS Conference on Neural Engineering.

[164]  B. Chandrasekaran,et al.  On dimensionality and sample size in statistical pattern classification , 1971, Pattern Recognit..

[165]  Nicolas Y. Masse,et al.  Reach and grasp by people with tetraplegia using a neurally controlled robotic arm , 2012, Nature.

[166]  Emmanuel K. Kalunga,et al.  Online SSVEP-based BCI using Riemannian geometry , 2015, Neurocomputing.

[167]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[168]  Motoaki Kawanabe,et al.  Robust Spatial Filtering with Beta Divergence , 2013, NIPS.

[169]  Michael S. Lazar,et al.  Spatial patterns underlying population differences in the background EEG , 2005, Brain Topography.

[170]  Gert Pfurtscheller,et al.  Characterization of four-class motor imagery EEG data for the BCI-competition 2005 , 2005, Journal of neural engineering.

[171]  P. Czobor,et al.  P300 deficits in adults with attention deficit hyperactivity disorder: a meta-analysis , 2010, Psychological Medicine.

[172]  J. Wolpaw,et al.  Brain–computer interfaces in neurological rehabilitation , 2008, The Lancet Neurology.

[173]  J. Masdeu,et al.  Human Cerebral Activation during Steady-State Visual-Evoked Responses , 2003, The Journal of Neuroscience.

[174]  José del R. Millán,et al.  Noninvasive brain-actuated control of a mobile robot by human EEG , 2004, IEEE Transactions on Biomedical Engineering.

[175]  G. Schott Penfield's homunculus: a note on cerebral cartography. , 1993, Journal of neurology, neurosurgery, and psychiatry.

[176]  Wolfgang Rosenstiel,et al.  One Class SVM and Canonical Correlation Analysis increase performance in a c-VEP based Brain-Computer Interface (BCI) , 2012, ESANN.

[177]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[178]  R. Caton,et al.  Electrical Currents of the Brain , 1875 .

[179]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[180]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[181]  M. J. E. Salami,et al.  EEG signal classification for real-time brain-computer interface applications: A review , 2011, 2011 4th International Conference on Mechatronics (ICOM).

[182]  P R Kennedy,et al.  Direct control of a computer from the human central nervous system. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[183]  A. Wilkins,et al.  Photic‐ and Pattern‐induced Seizures: A Review for the Epilepsy Foundation of America Working Group , 2005, Epilepsia.

[184]  Wang Wei,et al.  Classifying EEG Signals Based HMM-AR , 2008, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering.

[185]  E R John,et al.  Information Delivery and the Sensory Evoked Potential , 1967, Science.

[186]  M. Nuttin,et al.  Asynchronous non-invasive brain-actuated control of an intelligent wheelchair , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[187]  R. Andersen,et al.  Cognitive Control Signals for Neural Prosthetics , 2004, Science.

[188]  F Cincotti,et al.  Self-calibration algorithm in an asynchronous P300-based brain–computer interface , 2014, Journal of neural engineering.

[189]  Yuting Zhang,et al.  Comparison of classification methods on EEG signals based on wavelet packet decomposition , 2014, Neural Computing and Applications.

[190]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[191]  Francisco J. Pelayo,et al.  A high performance SSVEP-BCI without gazing , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[192]  Baba C. Vemuri,et al.  On A Nonlinear Generalization of Sparse Coding and Dictionary Learning , 2013, ICML.

[193]  J. Gross,et al.  Steady-State Visual Evoked Potentials Can Be Explained by Temporal Superposition of Transient Event-Related Responses , 2011, PloS one.

[194]  Amit Konar,et al.  Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data , 2010, 2010 International Conference on Systems in Medicine and Biology.

[195]  Klaus-Robert Müller,et al.  Interpretable deep neural networks for single-trial EEG classification , 2016, Journal of Neuroscience Methods.

[196]  Yu Hao,et al.  A visual feedback design based on a brain-computer interface to assist users regulate their emotional state , 2014, CHI Extended Abstracts.

[197]  Tobias Kaufmann,et al.  Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state , 2013, Front. Neurosci..

[198]  Cuntai Guan,et al.  Asynchronous P300-Based Brain--Computer Interfaces: A Computational Approach With Statistical Models , 2008, IEEE Transactions on Biomedical Engineering.

[199]  G Pfurtscheller,et al.  Graphical display and statistical evaluation of event-related desynchronization (ERD). , 1977, Electroencephalography and clinical neurophysiology.

[200]  Andrews Samraj,et al.  An online single trial analysis of the P300 event related potential for the disabled , 2010, 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel.

[201]  Li Yao,et al.  P300 Detection Using Boosting Neural Networks with Application to BCI , 2007, 2007 IEEE/ICME International Conference on Complex Medical Engineering.

[202]  J. del R. Millán,et al.  Multimodal Fusion of Muscle and Brain Signals for a Hybrid-BCI , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[203]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[204]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[205]  Byron M. Yu,et al.  Motor cortical control of movement speed with implications for brain-machine interface control. , 2014, Journal of neurophysiology.

[206]  A. Lenhardt,et al.  An Adaptive P300-Based Online Brain–Computer Interface , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[207]  A. Cichocki,et al.  Optimization of SSVEP brain responses with application to eight-command Brain–Computer Interface , 2010, Neuroscience Letters.

[208]  Emmanuel Maby,et al.  Theoretical analysis of xDAWN algorithm: Application to an efficient sensor selection in a p300 BCI , 2011, 2011 19th European Signal Processing Conference.

[209]  M J Stokes,et al.  EEG-based communication: a pattern recognition approach. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[210]  Conrad V. Kufta,et al.  Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. , 1994, Electroencephalography and clinical neurophysiology.

[211]  N. Birbaumer,et al.  fMRI Brain-Computer Interfaces , 2008, IEEE Signal Processing Magazine.

[212]  Klaus-Robert Müller,et al.  Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms , 2004, IEEE Transactions on Biomedical Engineering.

[213]  Benjamin Blankertz,et al.  A novel brain-computer interface based on the rapid serial visual presentation paradigm , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[214]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[215]  Yves Grandvalet Anisotropic noise injection for input variables relevance determination , 2000, IEEE Trans. Neural Networks Learn. Syst..

[216]  Erich E. Sutter,et al.  The brain response interface: communication through visually-induced electrical brain responses , 1992 .

[217]  René Vidal,et al.  Clustering and dimensionality reduction on Riemannian manifolds , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[218]  Anoop Cherian,et al.  Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet Divergence , 2011, 2011 International Conference on Computer Vision.

[219]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[220]  E Donchin,et al.  Brain-computer interface technology: a review of the first international meeting. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[221]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[222]  Emmanuel K. Kalunga,et al.  Hybrid interface: Integrating BCI in multimodal human-machine interfaces , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[223]  Donald H. Foley Considerations of sample and feature size , 1972, IEEE Trans. Inf. Theory.

[224]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[225]  P. Roland,et al.  Supplementary motor area and other cortical areas in organization of voluntary movements in man. , 1980, Journal of neurophysiology.

[226]  Daming Wei,et al.  Development of P300 Detection Algorithm for Brain Computer Interface in Single Trial , 2007, 7th IEEE International Conference on Computer and Information Technology (CIT 2007).

[227]  K. M. Wong,et al.  EEG signal classification based on a Riemannian distance measure , 2009, 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH).

[228]  Seungjin Choi,et al.  PCA+HMM+SVM for EEG pattern classification , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[229]  M. Jeannerod Mental imagery in the motor context , 1995, Neuropsychologia.

[230]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[231]  H. Karcher Riemannian Center of Mass and so called karcher mean , 2014, 1407.2087.

[232]  S. Amari Information geometry in optimization, machine learning and statistical inference , 2010 .

[233]  Emmanuel K. Kalunga,et al.  Using Riemannian geometry for SSVEP-based Brain Computer Interface , 2015, 1501.03227.

[234]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[235]  Ayman Atia,et al.  Brain computer interfacing: Applications and challenges , 2015 .

[236]  G Pfurtscheller,et al.  Using time-dependent neural networks for EEG classification. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[237]  Nicholas P. Szrama,et al.  Decoding three-dimensional reaching movements using electrocorticographic signals in humans , 2016, Journal of neural engineering.

[238]  Sarah D Power,et al.  Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI , 2012, BMC Research Notes.

[239]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[240]  S. P. Levine,et al.  Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement , 2003, Clinical Neurophysiology.

[241]  K. Müller,et al.  Single Trial Classification of Motor Imagination Using 6 Dry EEG Electrodes , 2007, PloS one.

[242]  Klaus-Robert Müller,et al.  Increase Information Transfer Rates in BCI by CSP Extension to Multi-class , 2003, NIPS.

[243]  M. Boly,et al.  [Functional neuroimaging (fMRI, PET and MEG): what do we measure?]. , 2008, Revue medicale de Liege.

[244]  Sylvain Chevallier,et al.  SSVEP enhancement based on Canonical Correlation Analysis to improve BCI performances , 2013, 2013 Africon.

[245]  S A Hillyard,et al.  Feature-selective attention enhances color signals in early visual areas of the human brain , 2006, Proceedings of the National Academy of Sciences.

[246]  E. W. Sellers,et al.  Toward enhanced P300 speller performance , 2008, Journal of Neuroscience Methods.

[247]  B. Kannapiran,et al.  EEG signal classification using Principal Component Analysis with Neural Network in Brain Computer Interface applications , 2013, 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN).

[248]  Moritz Grosse-Wentrup,et al.  Critical issues in state-of-the-art brain–computer interface signal processing , 2011, Journal of neural engineering.

[249]  G Pfurtscheller,et al.  Toward a hybrid brain–computer interface based on imagined movement and visual attention , 2010, Journal of neural engineering.

[250]  J. A. Elshout Review of Brain-Computer Interfaces based on the P300 evoked potential , 2009 .

[251]  Wolfgang Rosenstiel,et al.  An MEG-based brain–computer interface (BCI) , 2007, NeuroImage.

[252]  S. Hillyard,et al.  Selective attention to stimulus location modulates the steady-state visual evoked potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[253]  A. Kübler,et al.  Flashing characters with famous faces improves ERP-based brain–computer interface performance , 2011, Journal of neural engineering.

[254]  Niels Birbaumer,et al.  Severity of Depressive Symptoms and Quality of Life in Patients with Amyotrophic Lateral Sclerosis , 2005, Neurorehabilitation and neural repair.

[255]  Fabien Lotte,et al.  Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study , 2016, Journal of neural engineering.

[256]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[257]  A. Cichocki,et al.  A survey of the dummy face and human face stimuli used in BCI paradigm , 2015, Journal of Neuroscience Methods.

[258]  Anatole Lécuyer,et al.  An overview of research on "passive" brain-computer interfaces for implicit human-computer interaction , 2010 .

[259]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[260]  F. Babiloni,et al.  A covert attention P300-based brain–computer interface: Geospell , 2012, Ergonomics.