Nitrovinyl substituted calix[4]pyrrole as a unique, reaction-based chemosensor for cyanide anion

[1]  Mark S. Taylor,et al.  Polymers for anion recognition and sensing. , 2012, Macromolecular rapid communications.

[2]  Jong Seung Kim,et al.  Coumarin-Cu(II) ensemble-based cyanide sensing chemodosimeter. , 2011, Organic letters.

[3]  Chang-Hee Lee Versatilities of Calix(4)pyrrole Based Anion Receptors , 2011 .

[4]  Philip A. Gale,et al.  Anion Receptor Chemistry , 2016 .

[5]  Juyoung Yoon,et al.  A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. , 2010, Chemical communications.

[6]  Jong‐In Hong,et al.  Fluorescence turn-on sensor for cyanide based on a cobalt(II)-coumarinylsalen complex. , 2010, Organic letters.

[7]  Hae-Jo Kim,et al.  Doubly activated coumarin as a colorimetric and fluorescent chemodosimeter for cyanide , 2010 .

[8]  Juyoung Yoon,et al.  Sensors for the optical detection of cyanide ion. , 2010, Chemical Society reviews.

[9]  Jaeduk Yoo,et al.  Strapped calix[4]pyrroles bearing a 1,3-indanedione at a beta-pyrrolic position: chemodosimeters for the cyanide anion. , 2009, Organic letters.

[10]  F. Gabbaï,et al.  Sulfonium boranes for the selective capture of cyanide ions in water. , 2009, Angewandte Chemie.

[11]  J. Sessler,et al.  Modern reaction-based indicator systems. , 2009, Chemical Society reviews.

[12]  Juyoung Yoon,et al.  Beta-vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion. , 2009, Chemical communications.

[13]  J. Sessler,et al.  Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. , 2008, Chemical communications.

[14]  F. Baud,et al.  Cyanide: critical issues in diagnosis and treatment , 2007, Human & experimental toxicology.

[15]  R. Martínez‐Máñez,et al.  Subphthalocyanines as fluoro-chromogenic probes for anions and their application to the highly selective and sensitive cyanide detection. , 2005, Chemical communications.

[16]  Xinghai Shen,et al.  Temperature dependence of the inclusion–dissociation behavior of the inclusion complexes between cationic substituted 3H-indoles and β-cyclodextrin: Design of a novel type of semi-rotaxane , 2005 .

[17]  J. Lakowicz,et al.  Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. , 2005, Journal of the American Chemical Society.

[18]  W. Jin,et al.  Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. , 2005, Chemical communications.

[19]  C. D. Geddes,et al.  Cyanide-sensitive fluorescent probes. , 2005, Dyes and pigments : an international journal.

[20]  M. Lam,et al.  A heterobimetallic ruthenium(II)-copper(II) donor-acceptor complex as a chemodosimetric ensemble for selective cyanide detection. , 2004, Inorganic chemistry.

[21]  G. Shepherd,et al.  Cyanide Poisoning and Its Treatment , 2004, Pharmacotherapy.

[22]  Rosario Pereiro,et al.  Surface-modified CdSe quantum dots as luminescent probes for cyanide determination , 2004 .

[23]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[24]  Jong‐In Hong,et al.  Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide. , 2002, Chemical communications.

[25]  E. De Clercq,et al.  SYNTHESIS AND ANTI-HIV ACTIVITY OF THYMIDINE ANALOGUES BEARING A 4′-CYANOVINYL GROUP AND SOME DERIVATIVES THEREOF , 2001, Nucleosides, nucleotides & nucleic acids.

[26]  Philip A. Gale Anion receptor chemistry: highlights from 1999 , 2001 .

[27]  Philip A. Gale Anion coordination and anion-directed assembly: highlights from 1997 and 1998 , 2000 .

[28]  J. Tronchet,et al.  Influence of the structure of the sugar moiety on the cytotoxic and antiviral properties of sugar electrophiles. , 1988, Chemical and pharmaceutical bulletin.