Logic, semigroups and automata on words
暂无分享,去创建一个
[1] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[2] E. Allen Emerson,et al. Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[3] Johan Anthory Willem Kamp,et al. Tense logic and the theory of linear order , 1968 .
[4] Wolfgang Thomas,et al. A Combinatorial Approach to the Theory of omega-Automata , 1981, Inf. Control..
[5] Jean-Pierre Pécuchet. Variétés de Semis Groupes et Mots Infinis , 1986, STACS.
[6] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[7] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[8] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[9] Janusz A. Brzozowski,et al. Characterizations of locally testable events , 1973, Discret. Math..
[10] C. C. Elgot. Decision problems of finite automata design and related arithmetics , 1961 .
[11] Robert McNaughton,et al. Algebraic decision procedures for local testability , 1974, Mathematical systems theory.
[12] Mustapha Arfi. Polynomial Operations on Rational Languages , 1987, STACS.
[13] Howard Straubing,et al. Aperiodic homomorphisms and the concatenation product of recognizable sets , 1979 .
[14] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[15] Giuseppe Pirillo,et al. On a natural extension of Jacob's ranks , 1986, J. Comb. Theory, Ser. A.
[16] Danièle Beauquier,et al. About Rational Sets of Factors of a Bi-Infinite Word , 1985, ICALP.
[17] Saharon Shelah,et al. On the temporal analysis of fairness , 1980, POPL '80.
[18] Thomas Wilke,et al. Locally Threshold Testable Languages of Infinite Words , 1993, STACS.
[19] Lawrence H. Landweber,et al. Definability in the monadic second-order theory of successor , 1969, Journal of Symbolic Logic.
[20] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..
[21] Maurice Nivat,et al. Ensembles reconnaissables de mots biinfinis , 1986 .
[22] David F. Cowan,et al. Inverse Monoids of dot-Depth Two , 1993, Int. J. Algebra Comput..
[23] Danièle Beauquier. Ensembles reconnaissables de mots bi -infinis limite et déterminisme , 1984, Automata on Infinite Words.
[24] G. Lallement. Semigroups and combinatorial applications , 1979 .
[25] Dominique Perrin,et al. Varietes de Semigroupes et Mots Infinis , 1983, ICALP.
[26] André Arnold,et al. A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..
[27] Albert R. Meyer,et al. WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .
[28] Richard E. Ladner,et al. Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..
[29] Denis Thérien,et al. Graph congruences and wreath products , 1985 .
[30] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[31] Danièle Beauquier,et al. Languages and Scanners , 1991, Theor. Comput. Sci..
[32] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .
[33] Jacques Stern,et al. Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..
[34] Wolfgang Thomas. On Logics, Tilings, and Automata , 1991, ICALP.
[35] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[36] Danièle Girault-Beauquier. Bilimites de langages reconnaissables , 1984 .
[37] Dominique Perrin,et al. On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..
[38] Howard Straubing,et al. regular Languages Defined with Generalized Quantifiers , 1988, ICALP.
[39] W. V. Quine,et al. Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.
[40] Howard Straubing,et al. Partially ordered finite monoids and a theorem of I , 1988 .
[41] Danièle Beauquier. Bilimites de Langages Reconnaissables , 1984, Theor. Comput. Sci..
[42] Lawrence H. Landweber,et al. Decision problems forω-automata , 1969, Mathematical systems theory.
[43] Imre Simon,et al. Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..
[44] Jean-Pierre Pécuchet. Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1988, Theor. Comput. Sci..
[45] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[46] Thomas Wilke,et al. An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..
[47] Paul E. Schupp,et al. Automata on the Integers, Recurrence Distinguishability, and the Equivalence and Decidability of Monadic Theories , 1986, LICS.
[48] Neil Immerman,et al. Languages that Capture Complexity Classes , 1987, SIAM J. Comput..
[49] Ronald Fagin. Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .
[50] Pascal Weil. Inverse monoids and the dot -depth hierarchy , 1988 .
[51] Howard Straubing,et al. On a Conjecture Concerning Dot-Depth Two Languages , 1992, Theor. Comput. Sci..
[52] Danièle Beauquier,et al. Factors of Words , 1989, ICALP.
[53] Dominique Perrin,et al. Recent Results on Automata and Infinite Words , 1984, MFCS.
[54] Albert R. Meyer,et al. Word problems requiring exponential time(Preliminary Report) , 1973, STOC.
[55] S. Sieber. On a decision method in restricted second-order arithmetic , 1960 .
[56] D. Siefkes. Büchi's monadic second order successor arithmetic , 1970 .
[57] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[58] Pascal Weil,et al. Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.
[59] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[60] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[61] Joëlle Cohen-Chesnot,et al. On the Expressive Power of Temporal Logic for Infinite Words , 1991, Theor. Comput. Sci..
[62] Wolfgang Thomas,et al. Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..
[63] Wolfgang Thomas,et al. On the Ehrenfeucht-Fraïssé Game in Theoretical Computer Science , 1993, TAPSOFT.
[64] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[65] Howard Straubing,et al. Monoids of upper-triangular matrices , 1981 .
[66] Ronald Fagin,et al. Finite-Model Theory - A Personal Perspective , 1990, Theor. Comput. Sci..
[67] Jean-Éric Pin. Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..
[68] Jean-Pierre Péchuchet. Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1986 .
[69] R. McNaughton,et al. Counter-Free Automata , 1971 .
[70] Thomas Wilke. An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.
[71] Pascal Weil,et al. Some results on the dot-depth hierarchy , 1993 .
[72] A L Semenov. ON CERTAIN EXTENSIONS OF THE ARITHMETIC OF ADDITION OF NATURAL NUMBERS , 1980 .
[73] Jorge Almeida,et al. Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon , 1991 .
[74] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[75] Kevin J. Compton. ON RICH WORDS , 1983 .
[76] Róbert Szelepcsényi,et al. The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.
[77] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[78] Mustapha Arfi. Polynomial operations and hierarchies of concatenation (in French) , 1991 .
[79] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[80] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[81] H. Gaifman. On Local and Non-Local Properties , 1982 .
[82] Howard Straubing,et al. Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..