Logic, semigroups and automata on words

This is a survey article on the connections between the “sequential calculus” of Büchi, a system which allows to formalize properties of words, and the theory of automata. In the sequential calculus, there is a predicate for each letter and the unique extra non logical predicate is the relation symbol <, which is interpreted as the usual order on the integers. Several famous classes have been classified within this logic. We briefly review the main results concerning second order, which covers classes like PH, NP, P, etc., and then study in more detail the results concerning the monadic second-order and first-order logic. In particular, we survey the results and fascinating open problems dealing with the first-order quantifier hierarchy. We also discuss the first-order logic of one successor and the linear temporal logic. There are in fact three levels of results, since these logics can be interpreted on finite words, infinite words or bi-infinite words. The paper is self-contained. In particular, the necessary background on automata and finite semigroups is presented in a long introductory section, which includes some very recent results on the algebraic theory of infinite words.

[1]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[2]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[3]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[4]  Wolfgang Thomas,et al.  A Combinatorial Approach to the Theory of omega-Automata , 1981, Inf. Control..

[5]  Jean-Pierre Pécuchet Variétés de Semis Groupes et Mots Infinis , 1986, STACS.

[6]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[7]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[8]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[9]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1973, Discret. Math..

[10]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[11]  Robert McNaughton,et al.  Algebraic decision procedures for local testability , 1974, Mathematical systems theory.

[12]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[13]  Howard Straubing,et al.  Aperiodic homomorphisms and the concatenation product of recognizable sets , 1979 .

[14]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[15]  Giuseppe Pirillo,et al.  On a natural extension of Jacob's ranks , 1986, J. Comb. Theory, Ser. A.

[16]  Danièle Beauquier,et al.  About Rational Sets of Factors of a Bi-Infinite Word , 1985, ICALP.

[17]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[18]  Thomas Wilke,et al.  Locally Threshold Testable Languages of Infinite Words , 1993, STACS.

[19]  Lawrence H. Landweber,et al.  Definability in the monadic second-order theory of successor , 1969, Journal of Symbolic Logic.

[20]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[21]  Maurice Nivat,et al.  Ensembles reconnaissables de mots biinfinis , 1986 .

[22]  David F. Cowan,et al.  Inverse Monoids of dot-Depth Two , 1993, Int. J. Algebra Comput..

[23]  Danièle Beauquier Ensembles reconnaissables de mots bi -infinis limite et déterminisme , 1984, Automata on Infinite Words.

[24]  G. Lallement Semigroups and combinatorial applications , 1979 .

[25]  Dominique Perrin,et al.  Varietes de Semigroupes et Mots Infinis , 1983, ICALP.

[26]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[27]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[28]  Richard E. Ladner,et al.  Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..

[29]  Denis Thérien,et al.  Graph congruences and wreath products , 1985 .

[30]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[31]  Danièle Beauquier,et al.  Languages and Scanners , 1991, Theor. Comput. Sci..

[32]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[33]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[34]  Wolfgang Thomas On Logics, Tilings, and Automata , 1991, ICALP.

[35]  Jacques Stern,et al.  Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..

[36]  Danièle Girault-Beauquier Bilimites de langages reconnaissables , 1984 .

[37]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[38]  Howard Straubing,et al.  regular Languages Defined with Generalized Quantifiers , 1988, ICALP.

[39]  W. V. Quine,et al.  Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.

[40]  Howard Straubing,et al.  Partially ordered finite monoids and a theorem of I , 1988 .

[41]  Danièle Beauquier Bilimites de Langages Reconnaissables , 1984, Theor. Comput. Sci..

[42]  Lawrence H. Landweber,et al.  Decision problems forω-automata , 1969, Mathematical systems theory.

[43]  Imre Simon,et al.  Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..

[44]  Jean-Pierre Pécuchet Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1988, Theor. Comput. Sci..

[45]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[46]  Thomas Wilke,et al.  An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..

[47]  Paul E. Schupp,et al.  Automata on the Integers, Recurrence Distinguishability, and the Equivalence and Decidability of Monadic Theories , 1986, LICS.

[48]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[49]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[50]  Pascal Weil Inverse monoids and the dot -depth hierarchy , 1988 .

[51]  Howard Straubing,et al.  On a Conjecture Concerning Dot-Depth Two Languages , 1992, Theor. Comput. Sci..

[52]  Danièle Beauquier,et al.  Factors of Words , 1989, ICALP.

[53]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.

[54]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[55]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[56]  D. Siefkes Büchi's monadic second order successor arithmetic , 1970 .

[57]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[58]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[59]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[60]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[61]  Joëlle Cohen-Chesnot,et al.  On the Expressive Power of Temporal Logic for Infinite Words , 1991, Theor. Comput. Sci..

[62]  Wolfgang Thomas,et al.  Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..

[63]  Wolfgang Thomas,et al.  On the Ehrenfeucht-Fraïssé Game in Theoretical Computer Science , 1993, TAPSOFT.

[64]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[65]  Howard Straubing,et al.  Monoids of upper-triangular matrices , 1981 .

[66]  Ronald Fagin,et al.  Finite-Model Theory - A Personal Perspective , 1990, Theor. Comput. Sci..

[67]  Jean-Éric Pin Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..

[68]  Jean-Pierre Péchuchet Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1986 .

[69]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[70]  Thomas Wilke An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.

[71]  Pascal Weil,et al.  Some results on the dot-depth hierarchy , 1993 .

[72]  A L Semenov ON CERTAIN EXTENSIONS OF THE ARITHMETIC OF ADDITION OF NATURAL NUMBERS , 1980 .

[73]  Jorge Almeida,et al.  Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon , 1991 .

[74]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[75]  Kevin J. Compton ON RICH WORDS , 1983 .

[76]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[77]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[78]  Mustapha Arfi Polynomial operations and hierarchies of concatenation (in French) , 1991 .

[79]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[80]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[81]  H. Gaifman On Local and Non-Local Properties , 1982 .

[82]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..