Comparison of interatomic potentials for UO2. Part II: Molecular dynamics simulations

Abstract An improved knowledge of nuclear fuel can be gained from a better description of atomic-scale processes such as point defects behaviour under irradiation. In these perspectives, computer simulation techniques involving semi-empirical potentials can play a major role as they allow studying some of these processes separately. The range of applicability in static calculations of the available interatomic potentials for UO 2 has been previously assessed by the authors. This study complements the static calculations by including dynamical simulations of the temperature evolution of different elastic properties (lattice parameter, specific heat, bulk modulus and Gruneisen parameter) and by calculations of bulk melting temperature.

[1]  C. R. A. Catlow,et al.  The stability of fission products in uranium dioxide , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  Kazuhiro Yamada,et al.  Evaluation of thermal properties of uranium dioxide by molecular dynamics , 2000 .

[3]  J. Gale,et al.  Computational study of tetravalent uranium and plutonium lattice diffusion in zircon , 1998 .

[4]  K. Tharmalingam A theoretical study of the energies of formation of point defects in CaF2 and UO2 , 1971 .

[5]  M. Gillan,et al.  The dynamical simulation of superionic UO2 using shell-model potentials , 1994 .

[6]  J. Delaye,et al.  A new empirical potential for simulating the formation of defects and their mobility in uranium dioxide , 2003 .

[7]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[8]  C. Catlow,et al.  Trapping and solution of fission Xe in UO2.: Part 1. Single gas atoms and solution from underpressurized bubbles , 1985 .

[9]  D. Martin The elastic constants of polycrystalline UO2 and (U, Pu) mixed oxides: a review and recommendations , 1989 .

[10]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[11]  Keith Refson,et al.  Moldy: a portable molecular dynamics simulation program for serial and parallel computers , 2000 .

[12]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[13]  Donald R. Olander,et al.  Fundamental aspects of nuclear reactor fuel elements : prepared for the Division of Reactor Development and Demonstration, Energy Research and Development Administration , 1976 .

[14]  M. Gillan,et al.  A molecular dynamics study of solid and liquid UO2 , 1988 .

[15]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[16]  Dario Manara,et al.  Melting of Stoichiometric and Hyperstoichiometric Uranium Dioxide , 2005 .

[17]  C. Meis,et al.  Calculation of the threshold displacement energies in UO2 using ionic potentials , 2005 .

[18]  H. S. Kamath,et al.  Classical molecular dynamics simulation of UO2 to predict thermophysical properties , 2003 .

[19]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[20]  T. Karakasidis,et al.  A comment on a rigid-ion potential for UO2 , 1994 .

[21]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[22]  Tatsumi Arima,et al.  Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K , 2005 .

[23]  C. Catlow,et al.  Potential models for ionic oxides , 1985 .

[24]  Robin W. Grimes,et al.  Morphology of UO2 , 1999 .

[25]  C. Catlow,et al.  Point defect and electronic properties of uranium dioxide , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.