Dynamics of the generalized KP-MEW-Burgers equation with external periodic perturbation
暂无分享,去创建一个
[1] Asit Saha,et al. Bifurcation of travelling wave solutions for the generalized KP-MEW equations , 2012 .
[2] R. Grimshaw,et al. Periodic and chaotic behaviour in a reduction of the perturbed Korteweg-de Vries equation , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[3] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[4] Asit Saha,et al. A STUDY ON BIFURCATIONS OF TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED ZAKHAROV- KUZNETSOV MODIFIED EQUAL WIDTH EQUATION , 2013 .
[5] A. Mamun,et al. Ion-Acoustic Shock Waves in Nonextensive Multi-Ion Plasmas , 2015 .
[6] Abdul-Majid Wazwaz,et al. The tanh method and the sine–cosine method for solving the KP-MEW equation , 2005, Int. J. Comput. Math..
[7] D. Zheng,et al. Period doubling in a perturbed sine-Gordon system, a long Josephson junction , 1989 .
[8] S. Poria,et al. Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma , 2012 .
[9] Deformation and (3+1)-dimensional integrable model , 2000 .
[10] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[11] Shaoyong Li,et al. Compacton-like wave and kink-like wave solutions of the generalized KP-MEW (2, 2) equation , 2014 .
[12] Jibin Li,et al. Bifurcations of phase portraits of a Singular Nonlinear Equation of the Second Class , 2014, Commun. Nonlinear Sci. Numer. Simul..
[13] Abdullah Al Mamun,et al. Dust-acoustic shock waves in an electron depleted nonextensive dusty plasma , 2015 .
[14] Chaotic behaviour of solutions to a perturbed Korteweg—de Vries equation , 2002, nlin/0206019.
[15] G. V. van Heijst,et al. Transition to chaos in a confined two-dimensional fluid flow. , 2005, Physical review letters.
[16] Bo Tian,et al. Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium , 2017, Commun. Nonlinear Sci. Numer. Simul..
[17] B. Tian,et al. Solitons and dynamic analysis for a (2 + 1)-dimensional breaking soliton equation , 2017 .
[18] Minzhi Wei,et al. Single peak solitary wave solutions for the generalized KP-MEW (2, 2) equation under boundary condition , 2013, Appl. Math. Comput..
[19] A. Elgarayhi,et al. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution , 2015 .
[20] Juan J. Nieto,et al. A nonlinear biomathematical model for the study of intracranial aneurysms , 2000, Journal of the Neurological Sciences.
[21] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[22] S. Lou. Searching for Higher Dimensional Integrable Models from Lower Ones via Painlevé Analysis , 1998 .
[23] M. M. Selim,et al. Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons , 2015 .
[24] David J. Evans,et al. Solitary waves for the generalized equal width (GEW) equation , 2005, Int. J. Comput. Math..
[25] Abdullah Al Mamun,et al. Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas , 2015 .
[26] Abdullah Al Mamun,et al. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas , 2015 .
[27] F. Abdullaev. Dynamical chaos of solitons and nonlinear periodic waves , 1989 .
[28] Pankaj Kumar Mandal,et al. Nonplanar ion-acoustic shocks in electron–positron–ion plasmas: Effect of superthermal electrons , 2013, Pramana.
[29] Moon. Homoclinic crossings and pattern selection. , 1990, Physical review letters.
[30] Dong Li,et al. Compacton, peakon, cuspons, loop solutions and smooth solitons for the generalized KP-MEW equation , 2014, Comput. Math. Appl..