Prediction of the mass loss rate of polymer materials: Impact of residue formation
暂无分享,去创建一个
Bernhard Schartel | Gregory T. Linteris | Anja Hofmann | Richard E. Lyon | Stanislav I. Stoliarov | R. N. Walters | S. Stoliarov | B. Schartel | R. Lyon | G. Linteris | Richard N. Walters | Anja Hofmann | Florian Kempel | Florian Kempel
[1] T. Steinhaus,et al. Determination of the flammability properties of polymeric materials: A novel method , 2011 .
[2] Jan Vierendeels,et al. An enthalpy-based pyrolysis model for charring and non-charring materials in case of fire , 2010 .
[3] Bernhard Schartel,et al. Some comments on the main fire retardancy mechanisms in polymer nanocomposites , 2006 .
[4] B. Schartel,et al. Some comments on the use of cone calorimeter data , 2005 .
[5] G. Linteris. Numerical simulations of polymer pyrolysis rate: Effect of property variations , 2011 .
[7] Glenn P. Forney,et al. Fire Dynamics Simulator (Version 3): User's Guide (NISTIR 6784) | NIST , 2001 .
[8] Heinz Sturm,et al. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass‐fiber reinforced poly(1,4‐butylene terephthalate): the influence of metal cation , 2008 .
[9] B. T. Rhodes,et al. Burning rate and flame heat flux for PMMA in a cone calorimeter , 1996 .
[10] S. Stoliarov,et al. Prediction of the burning rates of non-charring polymers , 2009 .
[11] Michael A. Delichatsios,et al. Further Validation of a Numerical Model for Prediction of Pyrolysis of Polymer Nanocomposites in the Cone Calorimeter , 2010 .
[12] Richard D. Peacock,et al. Heat release rate: The single most important variable in fire hazard☆ , 1990 .
[13] Bernhard Schartel,et al. Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .
[14] Wenguo Weng,et al. A pyrolysis model of charring materials considering the effect of ambient oxygen concentration , 2007 .
[15] Charles A. Wilkie,et al. Fire retardancy of polymeric materials , 2000 .
[16] A. Fernandez-Pello,et al. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion , 2006 .
[17] R. N. Walters,et al. Determination of the heats of gasification of polymers using differential scanning calorimetry , 2008 .
[18] G. Bräuer,et al. Large area glass coating , 1999 .
[19] James G. Quintiere,et al. Material fire properties and predictions for thermoplastics , 1996 .
[20] R. J. Gaymans,et al. Amide-modified poly(butylene terepthalate): thermal stability , 1996 .
[21] Bernhard Schartel,et al. Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate) , 2008 .
[22] B. Schartel,et al. Phosphonium‐modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo‐phosphorus fire retardants , 2006 .
[23] John E. J. Staggs,et al. Modelling the combustion of solid-phase fuels in cone calorimeter experiments , 1999 .
[24] Richard E. Lyon,et al. The effect of variation in polymer properties on the rate of burning , 2009 .
[25] C. Fernandez-Pello,et al. Generalized pyrolysis model for combustible solids , 2007 .
[26] John E. J. Staggs. The heat of gasification of polymers , 2004 .
[27] Jean-Louis Delfau,et al. Experimental and Numerical Study of the Thermal Degradation of PMMA , 1987 .
[28] C. Blasi. The state of the art of transport models for charring solid degradation , 2000 .
[29] Bernhard Schartel,et al. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate , 2009 .
[30] J. Quintiere,et al. Criteria for piloted ignition of combustible solids , 2007 .
[31] A. Tewarson,et al. Flammability of plastics—I. Burning intensity , 1976 .