Prediction of the mass loss rate of polymer materials: Impact of residue formation

Abstract Two different numerical simulation tools, Fire Dynamic Simulator (FDS) and ThermaKin, are investigated with respect to their capability to predict the mass loss rate of polymer materials exposed to different fires. For validation, gasification apparatus and cone calorimeter tests are conducted. The main focus is on the influence of residue formation. Therefore, poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF) are investigated and compared. PBT decomposes almost completely, while PBT-GF forms residue. The materials are characterised in order to provide suitable input parameters. Additionally the total incident heat flux to the sample is measured. With accurate input parameters, FDS and ThermaKin predicted the pyrolysis behaviour of PBT very well. Only some limitations are identified regarding the residue-forming PBT-GF. Both numerical simulation tools demonstrate a high value regarding the assessment of parameters’ relative impacts and thus the evaluation of optimisation routes in polymer and composite development.

[1]  T. Steinhaus,et al.  Determination of the flammability properties of polymeric materials: A novel method , 2011 .

[2]  Jan Vierendeels,et al.  An enthalpy-based pyrolysis model for charring and non-charring materials in case of fire , 2010 .

[3]  Bernhard Schartel,et al.  Some comments on the main fire retardancy mechanisms in polymer nanocomposites , 2006 .

[4]  B. Schartel,et al.  Some comments on the use of cone calorimeter data , 2005 .

[5]  G. Linteris Numerical simulations of polymer pyrolysis rate: Effect of property variations , 2011 .

[6]  Gasification of silicone fluids under external thermal radiation. Part I. Gasification rate and global heat of gasification , 1998 .

[7]  Glenn P. Forney,et al.  Fire Dynamics Simulator (Version 3): User's Guide (NISTIR 6784) | NIST , 2001 .

[8]  Heinz Sturm,et al.  Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass‐fiber reinforced poly(1,4‐butylene terephthalate): the influence of metal cation , 2008 .

[9]  B. T. Rhodes,et al.  Burning rate and flame heat flux for PMMA in a cone calorimeter , 1996 .

[10]  S. Stoliarov,et al.  Prediction of the burning rates of non-charring polymers , 2009 .

[11]  Michael A. Delichatsios,et al.  Further Validation of a Numerical Model for Prediction of Pyrolysis of Polymer Nanocomposites in the Cone Calorimeter , 2010 .

[12]  Richard D. Peacock,et al.  Heat release rate: The single most important variable in fire hazard☆ , 1990 .

[13]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[14]  Wenguo Weng,et al.  A pyrolysis model of charring materials considering the effect of ambient oxygen concentration , 2007 .

[15]  Charles A. Wilkie,et al.  Fire retardancy of polymeric materials , 2000 .

[16]  A. Fernandez-Pello,et al.  Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion , 2006 .

[17]  R. N. Walters,et al.  Determination of the heats of gasification of polymers using differential scanning calorimetry , 2008 .

[18]  G. Bräuer,et al.  Large area glass coating , 1999 .

[19]  James G. Quintiere,et al.  Material fire properties and predictions for thermoplastics , 1996 .

[20]  R. J. Gaymans,et al.  Amide-modified poly(butylene terepthalate): thermal stability , 1996 .

[21]  Bernhard Schartel,et al.  Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate) , 2008 .

[22]  B. Schartel,et al.  Phosphonium‐modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo‐phosphorus fire retardants , 2006 .

[23]  John E. J. Staggs,et al.  Modelling the combustion of solid-phase fuels in cone calorimeter experiments , 1999 .

[24]  Richard E. Lyon,et al.  The effect of variation in polymer properties on the rate of burning , 2009 .

[25]  C. Fernandez-Pello,et al.  Generalized pyrolysis model for combustible solids , 2007 .

[26]  John E. J. Staggs The heat of gasification of polymers , 2004 .

[27]  Jean-Louis Delfau,et al.  Experimental and Numerical Study of the Thermal Degradation of PMMA , 1987 .

[28]  C. Blasi The state of the art of transport models for charring solid degradation , 2000 .

[29]  Bernhard Schartel,et al.  Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate , 2009 .

[30]  J. Quintiere,et al.  Criteria for piloted ignition of combustible solids , 2007 .

[31]  A. Tewarson,et al.  Flammability of plastics—I. Burning intensity , 1976 .