Exploring instantons with spin-lattice systems
暂无分享,去创建一个
[1] N. Sakai,et al. Exact Phase Structure of One Dimensional Chiral Magnets , 2020 .
[2] M. Spannowsky,et al. The emergence of electroweak Skyrmions through Higgs bosons , 2020, Journal of High Energy Physics.
[3] F. Hellman,et al. Creation and confirmation of Hopfions in magnetic multilayer systems , 2020, 2010.08674.
[4] M. Spannowsky,et al. Observing the fate of the false vacuum with a quantum laboratory , 2020, 2006.06003.
[5] M. Spannowsky,et al. Quantum Computing for Quantum Tunnelling , 2020, 2003.07374.
[6] N. Sakai,et al. Skyrmion Interactions and Lattices in Solvable Chiral Magnets , 2020, 2003.07147.
[7] T. Hesjedal,et al. Magnetic skyrmion interactions in the micromagnetic framework , 2020, Physical Review B.
[8] E. Chudnovsky,et al. Skyrmion–skyrmion interaction in a magnetic film , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.
[9] T. Fujimori,et al. Instantons in chiral magnets , 2019, Physical Review B.
[10] Mark R. Dennis,et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets , 2019, Nature Physics.
[11] P. Sutcliffe,et al. Hopfions in chiral magnets , 2018, Journal of Physics A: Mathematical and Theoretical.
[12] Jiadong Zang,et al. Binding a hopfion in a chiral magnet nanodisk , 2018, Physical Review B.
[13] I. Smalyukh,et al. Static Hopf Solitons and Knotted Emergent Fields in Solid-State Noncentrosymmetric Magnetic Nanostructures. , 2018, Physical review letters.
[14] S. Rychkov,et al. A structural test for the conformal invariance of the critical 3d Ising model , 2018, Journal of High Energy Physics.
[15] P. Sutcliffe,et al. Skyrmion Knots in Frustrated Magnets. , 2017, Physical review letters.
[16] A. Leonov,et al. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy , 2017, 1704.00100.
[17] R. Wiesendanger,et al. Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.
[18] J. Lopes,et al. Conformal symmetry of the critical 3D Ising model inside a sphere , 2015, 1503.02011.
[19] R. Wiesendanger,et al. Writing and Deleting Single Magnetic Skyrmions , 2013, Science.
[20] L. Fritz,et al. Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations , 2013, 1304.6580.
[21] A. Fert,et al. Skyrmions on the track. , 2013, Nature nanotechnology.
[22] Y. Shnir. Topological solitons , 2012, Physics of Particles and Nuclei Letters.
[23] S. Rychkov,et al. Solving the 3d Ising Model with the Conformal Bootstrap II. $$c$$c-Minimization and Precise Critical Exponents , 2012, 1403.4545.
[24] W. Vinci,et al. Decomposing instantons in two dimensions , 2011, 1108.5742.
[25] Jin-Hong Park,et al. Skyrmion lattice in a two-dimensional chiral magnet , 2010, 1006.3973.
[26] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[27] C. Morningstar. The Monte Carlo method in quantum field theory , 2007, hep-lat/0702020.
[28] A. Vishwanath,et al. Theory of helical spin crystals: Phases, textures, and properties , 2006, cond-mat/0608128.
[29] C. Pfleiderer,et al. Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.
[30] J. Zinn-Justin,et al. Instantons in quantum mechanics and resurgent expansions , 2004, hep-ph/0405279.
[31] R. Battye,et al. Solitons, links and knots , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[32] J. Hietarinta,et al. Faddeev-Hopf knots: dynamics of linked un-knots , 1998, hep-th/9811053.
[33] A. Niemi,et al. Knots and Particles , 1996, hep-th/9610193.
[34] R. Leese. Q-Lumps and their interactions , 1991 .
[35] W. Press,et al. Dynamical evolution of domain walls in an expanding universe , 1989 .
[36] Haldane,et al. O(3) nonlinear sigma model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. , 1988, Physical review letters.
[37] A. Vilenkin. Cosmic Strings and Domain Walls , 1985 .
[38] N. Manton,et al. A saddle-point solution in the Weinberg-Salam theory , 1984 .
[39] F. Wilczek,et al. Linking Numbers, Spin, and Statistics of Solitons , 1983 .
[40] F. Haldane. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .
[41] F. Haldane. Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model , 1983 .
[42] T. Kibble,et al. Some Implications of a Cosmological Phase Transition , 1980 .
[43] A. Actor. Classical solutions of SU (2) Yang--Mills theories , 1979 .
[44] D. Gross,et al. Toward a Theory of the Strong Interactions , 1978 .
[45] E. Bogomolny,et al. Stability of Classical Solutions , 1976 .
[46] C. Rebbi,et al. Vacuum Periodicity in a Yang-Mills Quantum Theory , 1976 .
[47] A. Polyakov,et al. Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .
[48] C. Sommerfield,et al. Exact Classical Solution for the 't Hooft Monopole and the Julia-Zee Dyon , 1975 .
[49] B. Hasslacher,et al. Nonperturbative methods and extended-hadron models in field theory. III. Four-dimensional non-Abelian models , 1974 .
[50] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[51] T. Skyrme. A Unified Field Theory of Mesons and Baryons , 1962 .
[52] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .
[53] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[54] J. Whitehead,et al. An Expression of Hopf's Invariant as an Integral. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[55] H. Hopf. Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .
[56] S. Vongehr,et al. Solitons , 2020, Encyclopedia of Continuum Mechanics.
[57] G. ’t Hooft,et al. Computation of the quantum effects due to a four-dimensional pseudoparticle , 2011 .
[58] Richard A. Battye,et al. Knots as stable soliton solutions in a three-dimensional classical field theory. , 1998 .
[59] A. Niemi. TOROIDAL CONFIGURATIONS AS STABLE SOLITONS , 1997 .
[60] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .