Exploring instantons with spin-lattice systems

Instanton processes are present in a variety of quantum field theories relevant to high energy as well as condensed matter physics. While they have led to important theoretical insights and physical applications, their underlying features often remain elusive due to the complicated computational treatment. Here, we address this problem by studying topological as well as non-topological instantons using Monte Carlo methods on lattices of interacting spins. As a proof of principle, we systematically construct instanton solutions in O(3) non-linear sigma models with a Dzyaloshinskii-Moriya interaction in (1 + 1) and (1 + 2) dimensions, thereby resembling an example of a chiral magnet. We demonstrate that, due to their close correspondence, Monte Carlo techniques in spin-lattice systems are well suited to describe topologically non-trivial field configurations in these theories. In particular, by means of simulated annealing, we demonstrate how to obtain domain walls, merons and critical instanton solutions.

[1]  N. Sakai,et al.  Exact Phase Structure of One Dimensional Chiral Magnets , 2020 .

[2]  M. Spannowsky,et al.  The emergence of electroweak Skyrmions through Higgs bosons , 2020, Journal of High Energy Physics.

[3]  F. Hellman,et al.  Creation and confirmation of Hopfions in magnetic multilayer systems , 2020, 2010.08674.

[4]  M. Spannowsky,et al.  Observing the fate of the false vacuum with a quantum laboratory , 2020, 2006.06003.

[5]  M. Spannowsky,et al.  Quantum Computing for Quantum Tunnelling , 2020, 2003.07374.

[6]  N. Sakai,et al.  Skyrmion Interactions and Lattices in Solvable Chiral Magnets , 2020, 2003.07147.

[7]  T. Hesjedal,et al.  Magnetic skyrmion interactions in the micromagnetic framework , 2020, Physical Review B.

[8]  E. Chudnovsky,et al.  Skyrmion–skyrmion interaction in a magnetic film , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  T. Fujimori,et al.  Instantons in chiral magnets , 2019, Physical Review B.

[10]  Mark R. Dennis,et al.  Two-dimensional skyrmion bags in liquid crystals and ferromagnets , 2019, Nature Physics.

[11]  P. Sutcliffe,et al.  Hopfions in chiral magnets , 2018, Journal of Physics A: Mathematical and Theoretical.

[12]  Jiadong Zang,et al.  Binding a hopfion in a chiral magnet nanodisk , 2018, Physical Review B.

[13]  I. Smalyukh,et al.  Static Hopf Solitons and Knotted Emergent Fields in Solid-State Noncentrosymmetric Magnetic Nanostructures. , 2018, Physical review letters.

[14]  S. Rychkov,et al.  A structural test for the conformal invariance of the critical 3d Ising model , 2018, Journal of High Energy Physics.

[15]  P. Sutcliffe,et al.  Skyrmion Knots in Frustrated Magnets. , 2017, Physical review letters.

[16]  A. Leonov,et al.  Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy , 2017, 1704.00100.

[17]  R. Wiesendanger,et al.  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[18]  J. Lopes,et al.  Conformal symmetry of the critical 3D Ising model inside a sphere , 2015, 1503.02011.

[19]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[20]  L. Fritz,et al.  Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations , 2013, 1304.6580.

[21]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[22]  Y. Shnir Topological solitons , 2012, Physics of Particles and Nuclei Letters.

[23]  S. Rychkov,et al.  Solving the 3d Ising Model with the Conformal Bootstrap II. $$c$$c-Minimization and Precise Critical Exponents , 2012, 1403.4545.

[24]  W. Vinci,et al.  Decomposing instantons in two dimensions , 2011, 1108.5742.

[25]  Jin-Hong Park,et al.  Skyrmion lattice in a two-dimensional chiral magnet , 2010, 1006.3973.

[26]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[27]  C. Morningstar The Monte Carlo method in quantum field theory , 2007, hep-lat/0702020.

[28]  A. Vishwanath,et al.  Theory of helical spin crystals: Phases, textures, and properties , 2006, cond-mat/0608128.

[29]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[30]  J. Zinn-Justin,et al.  Instantons in quantum mechanics and resurgent expansions , 2004, hep-ph/0405279.

[31]  R. Battye,et al.  Solitons, links and knots , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  J. Hietarinta,et al.  Faddeev-Hopf knots: dynamics of linked un-knots , 1998, hep-th/9811053.

[33]  A. Niemi,et al.  Knots and Particles , 1996, hep-th/9610193.

[34]  R. Leese Q-Lumps and their interactions , 1991 .

[35]  W. Press,et al.  Dynamical evolution of domain walls in an expanding universe , 1989 .

[36]  Haldane,et al.  O(3) nonlinear sigma model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. , 1988, Physical review letters.

[37]  A. Vilenkin Cosmic Strings and Domain Walls , 1985 .

[38]  N. Manton,et al.  A saddle-point solution in the Weinberg-Salam theory , 1984 .

[39]  F. Wilczek,et al.  Linking Numbers, Spin, and Statistics of Solitons , 1983 .

[40]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[41]  F. Haldane Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model , 1983 .

[42]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[43]  A. Actor Classical solutions of SU (2) Yang--Mills theories , 1979 .

[44]  D. Gross,et al.  Toward a Theory of the Strong Interactions , 1978 .

[45]  E. Bogomolny,et al.  Stability of Classical Solutions , 1976 .

[46]  C. Rebbi,et al.  Vacuum Periodicity in a Yang-Mills Quantum Theory , 1976 .

[47]  A. Polyakov,et al.  Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .

[48]  C. Sommerfield,et al.  Exact Classical Solution for the 't Hooft Monopole and the Julia-Zee Dyon , 1975 .

[49]  B. Hasslacher,et al.  Nonperturbative methods and extended-hadron models in field theory. III. Four-dimensional non-Abelian models , 1974 .

[50]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[51]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .

[52]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[53]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[54]  J. Whitehead,et al.  An Expression of Hopf's Invariant as an Integral. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[55]  H. Hopf Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .

[56]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[57]  G. ’t Hooft,et al.  Computation of the quantum effects due to a four-dimensional pseudoparticle , 2011 .

[58]  Richard A. Battye,et al.  Knots as stable soliton solutions in a three-dimensional classical field theory. , 1998 .

[59]  A. Niemi TOROIDAL CONFIGURATIONS AS STABLE SOLITONS , 1997 .

[60]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .