CuSn Alloy Nanoparticles on Nitrogen‐Doped Graphene for Electrocatalytic CO 2 Reduction

[1]  Q. Jiang,et al.  Electroreduction of CO 2 on Cu Clusters: The Effects of Size, Symmetry, and Temperature , 2019, ChemElectroChem.

[2]  Yuyu Liu,et al.  3D core–shell porous-structured Cu@Sn hybrid electrodes with unprecedented selective CO2-into-formate electroreduction achieving 100% , 2019, Journal of Materials Chemistry A.

[3]  Yafei Li,et al.  Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction , 2018, Nature Communications.

[4]  D. Rentsch,et al.  Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution , 2018, Applied Catalysis B: Environmental.

[5]  Xiao Jin Yang,et al.  Thermal‐Treatment‐Induced Cu−Sn Core/Shell Nanowire Array Catalysts for Highly Efficient CO 2 Electroreduction , 2018, ChemElectroChem.

[6]  Zhenmin Cheng,et al.  Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate , 2018 .

[7]  Dexin Yang,et al.  Highly Efficient Electroreduction of CO2 to Methanol on Palladium-Copper Bimetallic Aerogels. , 2018, Angewandte Chemie.

[8]  Z. Wen,et al.  Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane. , 2018, Angewandte Chemie.

[9]  A. Fujishima,et al.  Facile Deposition of Cu−SnO x Hybrid Nanostructures on Lightly Boron‐Doped Diamond Electrodes for CO 2 Reduction , 2018, ChemElectroChem.

[10]  T. Edvinsson,et al.  Unravelling in-situ formation of highly active mixed metal oxide CuInO2 nanoparticles during CO2 electroreduction , 2018, Nano Energy.

[11]  Masayukiu Morimoto,et al.  Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO− , 2018, Electrocatalysis.

[12]  R. Gómez,et al.  Simultaneous Electrocatalytic CO2 Reduction and Enhanced Electrochromic Effect at WO3 Nanostructured Electrodes in Acetonitrile , 2018 .

[13]  Pengfei Hou,et al.  Zinc Imidazolate Metal-Organic Frameworks (ZIF-8) for Electrochemical Reduction of CO2 to CO. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  T. Jaramillo,et al.  Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. , 2017, Journal of the American Chemical Society.

[15]  Changsheng Cao,et al.  Hollow CuS Microcube Electrocatalysts for CO2 Reduction Reaction , 2017 .

[16]  Wei Chen,et al.  Exclusive Formation of Formic Acid from CO2 Electroreduction by a Tunable Pd-Sn Alloy. , 2017, Angewandte Chemie.

[17]  S. Dou,et al.  Metal‐Free Carbon Materials for CO2 Electrochemical Reduction , 2017, Advanced materials.

[18]  M. Antonietti,et al.  Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes: A Step Towards the Electrochemical CO2 Refinery. , 2017, Angewandte Chemie.

[19]  A. Yamaguchi,et al.  Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst , 2017 .

[20]  J. Nørskov,et al.  Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles. , 2017, Journal of the American Chemical Society.

[21]  Garikoitz Beobide,et al.  Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. , 2017, ChemSusChem.

[22]  H. Xin,et al.  Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO2 Reduction. , 2017, Journal of the American Chemical Society.

[23]  D. Macfarlane,et al.  Hierarchical Mesoporous SnO2 Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO2 Reduction with High Efficiency and Selectivity. , 2017, Angewandte Chemie.

[24]  H. Neumann,et al.  Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. , 2016, Angewandte Chemie.

[25]  M. Beller,et al.  Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie , 2016 .

[26]  Soo‐Kil Kim,et al.  Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition , 2016 .

[27]  Antonio J. Martín,et al.  Enhanced Reduction of CO2 to CO over Cu–In Electrocatalysts: Catalyst Evolution Is the Key , 2016 .

[28]  Mohammad Asadi,et al.  Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid , 2016, Science.

[29]  A. Fujishima,et al.  Ionic‐Liquid‐Assisted Selective and Controlled Electrochemical CO2 Reduction at Cu‐Modified Boron‐Doped Diamond Electrode , 2016 .

[30]  E. Stach,et al.  Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene , 2016, Nature Communications.

[31]  Qiang Sun,et al.  Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons , 2016 .

[32]  J. Ager,et al.  Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. , 2016, Angewandte Chemie.

[33]  Angel T. Garcia-Esparza,et al.  Cu–Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO , 2016 .

[34]  J. Ager,et al.  Tailoring Copper Nanocrystals towards C 2 Products in Electrochemical CO 2 Reduction , 2016 .

[35]  N. Umezawa,et al.  Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO , 2016 .

[36]  Song Yi Choi,et al.  Electrochemical Reduction of Carbon Dioxide to Formate on Tin–Lead Alloys , 2016 .

[37]  T. Meyer,et al.  Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane , 2015, Proceedings of the National Academy of Sciences.

[38]  José Solla-Gullón,et al.  Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size , 2015 .

[39]  P. Yang,et al.  Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. , 2015, Journal of the American Chemical Society.

[40]  X. Bao,et al.  Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. , 2015, Journal of the American Chemical Society.

[41]  Chengming Wang,et al.  Composition-dependent activity of Cu–Pt alloy nanocubes for electrocatalytic CO2 reduction , 2015 .

[42]  Y. Minenkov,et al.  A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. , 2015, Angewandte Chemie.

[43]  Zhi-cheng Zhang,et al.  Engineering nanointerfaces for nanocatalysis. , 2014, Chemical Society reviews.

[44]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[45]  Hyung-Kyu Lim,et al.  Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. , 2014, Journal of the American Chemical Society.

[46]  Shuangyin Wang,et al.  One-Pot Synthesis of Fe2O3 Nanoparticles on Nitrogen-Doped Graphene as Advanced Supercapacitor Electrode Materials , 2014 .

[47]  Karen Chan,et al.  Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction , 2014 .

[48]  J. Glass,et al.  Polyethylenimine-enhanced electrocatalytic reduction of CO₂ to formate at nitrogen-doped carbon nanomaterials. , 2014, Journal of the American Chemical Society.

[49]  Peter Strasser,et al.  Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. , 2014, Journal of the American Chemical Society.

[50]  Falong Jia,et al.  Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst , 2014 .

[51]  D. Sokaras,et al.  Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO2 Electroreduction , 2014 .

[52]  Qiang Gao,et al.  Nitrogen-doped graphene supported CoSe₂ nanobelt composite catalyst for efficient water oxidation. , 2014, ACS nano.

[53]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[54]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[55]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[56]  Markus Antonietti,et al.  Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. , 2013, Chemical Society reviews.

[57]  Xueliang Sun,et al.  Ultrathin MoS2/Nitrogen‐Doped Graphene Nanosheets with Highly Reversible Lithium Storage , 2013 .

[58]  Jens K Nørskov,et al.  Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. , 2013, The journal of physical chemistry letters.

[59]  B. Vinayan,et al.  Novel Platinum–Cobalt Alloy Nanoparticles Dispersed on Nitrogen‐Doped Graphene as a Cathode Electrocatalyst for PEMFC Applications , 2012 .

[60]  K. Müllen,et al.  3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[61]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[62]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[63]  Bo Jin,et al.  Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst , 2015 .