Thermodynamics of Random Number Generation

We analyze the thermodynamic costs of the three main approaches to generating random numbers via the recently introduced Information Processing Second Law. Given access to a specified source of randomness, a random number generator (RNG) produces samples from a desired target probability distribution. This differs from pseudorandom number generators (PRNGs) that use wholly deterministic algorithms and from true random number generators (TRNGs) in which the randomness source is a physical system. For each class, we analyze the thermodynamics of generators based on algorithms implemented as finite-state machines, as these allow for direct bounds on the required physical resources. This establishes bounds on heat dissipation and work consumption during the operation of three main classes of RNG algorithms-including those of von Neumann, Knuth, and Yao and Roche and Hoshi-and for PRNG methods. We introduce a general TRNG and determine its thermodynamic costs exactly for arbitrary target distributions. The results highlight the significant differences between the three main approaches to random number generation: One is work producing, one is work consuming, and the other is potentially dissipation neutral. Notably, TRNGs can both generate random numbers and convert thermal energy to stored work. These thermodynamic costs on information creation complement Landauer's limit on the irreducible costs of information destruction.

[1]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[2]  Y. Peres Iterating Von Neumann's Procedure for Extracting Random Bits , 1992 .

[3]  E. G. Chester,et al.  Design of an on–chip random number generator using metastability , 2002, Proceedings of the 28th European Solid-State Circuits Conference.

[4]  James P. Crutchfield,et al.  Extreme Quantum Advantage when Simulating Strongly Coupled Classical Systems , 2016, ArXiv.

[5]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[6]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[7]  D. Romik Sharp entropy bounds for discrete statistical simulation , 1999 .

[8]  Mario Stipcevic,et al.  True Random Number Generators , 2014, Open Problems in Mathematics and Computational Science.

[9]  Ryan Tan,et al.  Towards quantifying complexity with quantum mechanics , 2014, 1404.6255.

[10]  Karoline Wiesner,et al.  Quantum mechanics can reduce the complexity of classical models , 2011, Nature Communications.

[11]  Bruce Schneier,et al.  Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator , 1999, Selected Areas in Cryptography.

[12]  Jonas Schreiber Low Noise Electronic Design , 2016 .

[13]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[14]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .

[15]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[16]  James P. Crutchfield,et al.  The Ambiguity of Simplicity , 2016, ArXiv.

[17]  Mark A. Moraes,et al.  Parallel random numbers: As easy as 1, 2, 3 , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[18]  W. Press Flicker noises in astronomy and elsewhere. , 1978 .

[19]  P. Elias The Efficient Construction of an Unbiased Random Sequence , 1972 .

[20]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[21]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[22]  Danail Bonchev,et al.  Chemical Reaction Networks: A Graph-Theoretical Approach , 1996 .

[23]  James P. Crutchfield,et al.  Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety , 2016, ArXiv.

[24]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[25]  Luca Trevisan,et al.  Extracting randomness from samplable distributions , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[26]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[27]  Saurya Das Black-hole thermodynamics: Entropy, information and beyond , 2004, hep-th/0403202.

[28]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[29]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[30]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[31]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[32]  J. R. Roche,et al.  Efficient Generation Of Random Variables From Biased Coins , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[33]  Monir Hajiaghayi,et al.  Leaderless Deterministic Chemical Reaction Networks , 2013, DNA.

[34]  M. N. Bera,et al.  Thermodynamics from Information , 2018, 1805.10282.

[35]  William Easttom Modern Cryptography , 2015 .

[36]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[37]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[38]  Luc Devroye,et al.  Sample-based non-uniform random variate generation , 1986, WSC '86.

[39]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[40]  Ho-Lin Chen,et al.  Deterministic function computation with chemical reaction networks , 2012, Natural Computing.

[41]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[42]  Luca Gammaitoni,et al.  Minimum Energy of Computing, Fundamental Considerations , 2014 .

[43]  Keshab K. Parhi,et al.  Digital Signal Processing With Molecular Reactions , 2012, IEEE Design & Test of Computers.

[44]  James P. Crutchfield,et al.  Statistical Signatures of Structural Organization: The case of long memory in renewal processes , 2015, ArXiv.

[45]  沙川 貴大,et al.  Thermodynamics of information processing in small systems , 2011 .

[46]  Mamoru Hoshi,et al.  Interval algorithm for random number generation , 1997, IEEE Trans. Inf. Theory.

[47]  J. Crutchfield,et al.  The ambiguity of simplicity in quantum and classical simulation , 2017 .

[48]  David Blaauw,et al.  True Random Number Generator With a Metastability-Based Quality Control , 2007, IEEE Journal of Solid-State Circuits.

[49]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[50]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[51]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[52]  Matthew Cook,et al.  Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.

[53]  Non-Gaussian cosmic microwave background temperature fluctuations from peculiar velocities of clusters , 2001, astro-ph/0104332.

[54]  Hao Zheng,et al.  Design and Implementation of a True Random Number Generator Based on Digital Circuit Artifacts , 2003, CHES.

[56]  A. B. Boyd,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.

[57]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[58]  Jehoshua Bruck,et al.  Programmability of Chemical Reaction Networks , 2009, Algorithmic Bioprocesses.

[59]  James P. Crutchfield,et al.  Occam’s Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel , 2015, Scientific Reports.

[60]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013, 1302.3089.

[61]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[62]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[63]  M. Magnasco CHEMICAL KINETICS IS TURING UNIVERSAL , 1997 .

[64]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[65]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[66]  Persi Diaconis,et al.  c ○ 2007 Society for Industrial and Applied Mathematics Dynamical Bias in the Coin Toss ∗ , 2022 .

[67]  H.W. Kraner,et al.  Radiation detection and measurement , 1981, Proceedings of the IEEE.

[68]  Luca Cardelli,et al.  Strand algebras for DNA computing , 2009, Natural Computing.

[69]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[70]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[71]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[72]  Reuven Y. Rubinstein,et al.  Modern simulation and modeling , 1998 .

[73]  James P. Crutchfield,et al.  Low-dimensional chaos in a hydrodynamic system , 1983 .

[74]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[75]  James P. Crutchfield,et al.  A Closed-Form Shave from Occam's Quantum Razor: Exact Results for Quantum Compression , 2015, ArXiv.

[76]  Michael Mascagni,et al.  A Fast, High Quality, and Reproducible Parallel Lagged-Fibonacci Pseudorandom Number Generator , 1995 .

[77]  A. Winsor Sampling techniques. , 2000, Nursing times.

[78]  Raghuveer M. Rao,et al.  Random Signals and Noise , 2005 .

[79]  Jack P. C. Kleijnen,et al.  EUROPEAN JOURNAL OF OPERATIONAL , 1992 .

[80]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[81]  Maurice G. Kendall,et al.  Randomness and Random Sampling Numbers , 1938 .

[82]  A. B. Boyd,et al.  Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.

[83]  A Hjelmfelt,et al.  Chemical implementation of neural networks and Turing machines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Antonio Acín,et al.  Certified randomness in quantum physics , 2016, Nature.

[85]  Black hole thermodynamics and information loss in two dimensions. , 1994, Physical review. D, Particles and fields.

[86]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.