Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms

We define and discuss the utility of two equivalence graph classes over which a spectral projector-based graph Fourier transform is equivalent: isomorphic equivalence classes and Jordan equivalence classes. Isomorphic equivalence classes show that the transform is equivalent up to a permutation on the node labels. Jordan equivalence classes permit identical transforms over graphs of nonidentical topologies and allow a basis-invariant characterization of total variation orderings of the spectral components. Methods to exploit these classes to reduce computation time of the transform as well as limitations are discussed.

[1]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.

[2]  Santiago Segarra,et al.  Reconstruction of Graph Signals Through Percolation from Seeding Nodes , 2015, IEEE Transactions on Signal Processing.

[3]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs: Frequency Analysis , 2013, IEEE Transactions on Signal Processing.

[4]  Sunil K. Narang,et al.  Perfect Reconstruction Two-Channel Wavelet Filter Banks for Graph Structured Data , 2011, IEEE Transactions on Signal Processing.

[5]  P. P. Vaidyanathan,et al.  Extending Classical Multirate Signal Processing Theory to Graphs—Part II: M-Channel Filter Banks , 2017, IEEE Transactions on Signal Processing.

[6]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[7]  David A. Cardon,et al.  The Jordan canonical form for a class of zero-one matrices , 2011 .

[8]  P. P. Vaidyanathan,et al.  Extending Classical Multirate Signal Processing Theory to Graphs—Part I: Fundamentals , 2017, IEEE Transactions on Signal Processing.

[9]  José M. F. Moura,et al.  Agile Inexact Methods for Spectral Projector-Based Graph Fourier Transforms , 2017, ArXiv.

[10]  Chau-Wen Tseng,et al.  A Comparison of Locality Transformations for Irregular Codes , 2000, LCR.

[11]  José M. F. Moura,et al.  Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data sets with irregular structure , 2014, IEEE Signal Processing Magazine.

[12]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[13]  Cagatay Candan,et al.  On the Eigenstructure of DFT Matrices [DSP Education] , 2011, IEEE Signal Processing Magazine.

[14]  Vivek K Goyal,et al.  Foundations of Signal Processing , 2014 .

[15]  Michael G. Rabbat,et al.  Approximating signals supported on graphs , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[17]  José M. F. Moura,et al.  Signal Recovery on Graphs: Variation Minimization , 2014, IEEE Transactions on Signal Processing.

[18]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[19]  José M. F. Moura,et al.  Spectral Projector-Based Graph Fourier Transforms , 2017, IEEE Journal of Selected Topics in Signal Processing.

[20]  Leif K. Jørgensen,et al.  Normally Regular Digraphs , 2014, Electron. J. Comb..

[21]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[22]  Santiago Segarra,et al.  Sampling of Graph Signals With Successive Local Aggregations , 2015, IEEE Transactions on Signal Processing.

[23]  F. R. Gantmakher The Theory of Matrices , 1984 .

[24]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[25]  Markus Püschel,et al.  Algebraic Signal Processing Theory: Foundation and 1-D Time , 2008, IEEE Transactions on Signal Processing.

[26]  José M. F. Moura,et al.  Algebraic Signal Processing Theory: 1-D Space , 2008, IEEE Transactions on Signal Processing.

[27]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.