Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem with Degenerate Density Dependent Viscosities

[1]  Z. Xin,et al.  On Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem , 2015, 1506.03906.

[2]  Z. Xin,et al.  Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation , 2014, 1402.3640.

[3]  J. Jang Nonlinear Instability Theory of Lane‐Emden Stars , 2012, 1211.2463.

[4]  S. Shkoller,et al.  Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum , 2012 .

[5]  Juhi Jang,et al.  Instability theory of the Navier–Stokes–Poisson equations , 2011, 1105.5128.

[6]  Changjiang Zhu,et al.  Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum , 2011 .

[7]  Q. Duan On the dynamics of Navier–Stokes equations for a shallow water model , 2011 .

[8]  Juhi Jang,et al.  Well‐posedness of Compressible Euler Equations in a Physical Vacuum , 2010, 1005.4441.

[9]  S. Shkoller,et al.  Well‐posedness in smooth function spaces for moving‐boundary 1‐D compressible euler equations in physical vacuum , 2009, 1003.4721.

[10]  Ting Zhang,et al.  Global Behavior of Spherically Symmetric Navier–Stokes–Poisson System with Degenerate Viscosity Coefficients , 2009 .

[11]  Juhi Jang,et al.  Well‐posedness for compressible Euler equations with physical vacuum singularity , 2008, 0806.1782.

[12]  J. Jang Nonlinear Instability in Gravitational Euler–Poisson Systems for $$\gamma=\frac{6}{5}$$ , 2008 .

[13]  J. Smoller,et al.  Nonlinear Dynamical Stability of Newtonian Rotating and Non-rotating White Dwarfs and Rotating Supermassive Stars , 2007, 0710.3150.

[14]  Juhi Jang,et al.  Local Well-Posedness of Dynamics of Viscous Gaseous Stars , 2007, 0706.1605.

[15]  J. Smoller,et al.  Existence and Non-linear Stability of Rotating Star Solutions of the Compressible Euler–Poisson Equations , 2007, gr-qc/0703033.

[16]  Tong Yang Singular behavior of vacuum states for compressible fluids , 2006 .

[17]  Ting Zhang,et al.  Global Behavior of Compressible Navier-Stokes Equations with a Degenerate Viscosity Coefficient , 2006 .

[18]  B. Ducomet,et al.  Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system , 2005, Appl. Math. Lett..

[19]  Zhouping Xin,et al.  Global Weak Solutions to 1D Compressible Isentropic Navier-Stokes Equations with Density-Dependent Viscosity , 2005 .

[20]  Mari Okada Free boundary problem for one-dimensional motions of compressible gas and vacuum , 2004 .

[21]  G. Rein Non-Linear Stability of Gaseous Stars , 2002, math-ph/0210045.

[22]  Changjiang Zhu,et al.  Compressible Navier–Stokes Equations with Degenerate Viscosity Coefficient and Vacuum , 2002 .

[23]  Tai-Ping Liu,et al.  Solutions of Euler-Poisson Equations¶for Gaseous Stars , 2002 .

[24]  Changjiang Zhu,et al.  COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY AND VACUUM , 2001 .

[25]  Zhouping Xin,et al.  Interface Behavior of Compressible Navier-Stokes Equations with Vacuum , 2000, SIAM J. Math. Anal..

[26]  Zhouping Xin,et al.  Vacuum states for compressible flow , 1997 .

[27]  Song-Sun Lin,et al.  Stability of gaseous stars in spherically symmetric motions , 1997 .

[28]  A. Lifschitz,et al.  Short-wavelength instabilities of Riemann ellipsoids , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Tai-Ping Liu,et al.  Compressible flow with damping and vacuum , 1996 .

[30]  Tetu Makino,et al.  Free boundary problem for the equation of spherically symmetric motion of viscous gas (III) , 1993 .

[31]  P. Secchi On the uniqueness of motion of viscous gaseous stars , 1990 .

[32]  Mari Okada,et al.  Free boundary value problems for the equation of one-dimensional motion of viscous gas , 1989 .

[33]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .

[34]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[35]  N. Lebovitz The Virial Tensor and its Application to Self-Gravitating Fluids. , 1961 .

[36]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[37]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[38]  Zhouping Xin,et al.  Lagrange Structure and Dynamics for Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations , 2012 .

[39]  N. Masmoudi About the Hardy Inequality , 2011 .

[40]  S. Shkoller,et al.  WELL-POSEDNESS IN SMOOTH FUNCTION SPACES FOR THE MOVING-BOUNDARY 1-D COMPRESSIBLE EULER EQUATIONS IN PHYSICAL VACUUM , 2010 .

[41]  Gerhard Ströhmer Asymptotic estimates for a perturbation of the linearization of an equation for compressible viscous fluid flow , 2008 .

[42]  Juhi Jang,et al.  Well-posedness for compressible Euler with physical vacuum singularity , 2008 .

[43]  Tai-Ping Liu,et al.  Comprenssible flow with vacumm and phisycal singlarity , 2000 .

[44]  Tetu Makino,et al.  Free boundary problem for the equation of spherically symmetric motion of viscous gas , 1993 .

[45]  P. Secchi On the evolution equations of viscous gaseous stars , 1991 .

[46]  T. Makino On a Local Existence Theorem for the Evolution Equation of Gaseous Stars , 1986 .