Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints

In this paper, Lipschitz univariate constrained global optimization problems where both the objective function and constraints can be multiextremal are considered. The constrained problem is reduced to a discontinuous unconstrained problem by the index scheme without introducing additional parameters or variables. A Branch-and-Bound method that does not use derivatives for solving the reduced problem is proposed. The method either determines the infeasibility of the original problem or finds lower and upper bounds for the global solution. Not all the constraints are evaluated during every iteration of the algorithm, providing a significant acceleration of the search. Convergence conditions of the new method are established. Extensive numerical experiments are presented.

[1]  Regina Hunter Mladineo Convergence rates of a global optimization algorithm , 1992, Math. Program..

[2]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[3]  Yaroslav D. Sergeyev,et al.  Global one-dimensional optimization using smooth auxiliary functions , 1998, Math. Program..

[4]  R. Shah,et al.  Controller tuning by a least‐squares method , 1987 .

[5]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[6]  Y. Sergeyev On convergence of "divide the best" global optimization algorithms , 1998 .

[7]  Leo Breiman,et al.  A deterministic algorithm for global optimization , 1993, Math. Program..

[8]  Fabio Schoen,et al.  Random Linkage: a family of acceptance/rejection algorithms for global optimisation , 1999, Math. Program..

[9]  R. Strongin NUMERICAL METHODS FOR MULTIEXTREMAL NONLINEAR PROGRAMMING PROBLEMS WITH NONCONVEX CONSTRAINTS , 1985 .

[10]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[11]  Duan Li,et al.  Value-Estimation Function Method for Constrained Global Optimization , 1999 .

[12]  Pasquale Daponte,et al.  Two methods for solving optimization problems arising in electronic measurements and electrical engineering , 1999, SIAM J. Optim..

[13]  Bruce W. Lamar,et al.  A Method for Converting a Class of Univariate Functions into d.c. Functions , 1999, J. Glob. Optim..

[14]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[15]  D. Famularo,et al.  Test Problems for Lipschitz Univariate Global Optimization with Multiextremal Constraints , 2002 .

[16]  János D. Pintér,et al.  Global optimization in action , 1995 .

[17]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[18]  M. A. Potapov,et al.  Numerical methods for global optimization , 1992 .

[19]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[20]  Tibor Csendes,et al.  Developments in Global Optimization , 1997 .

[21]  Tsu-Shuan Chang,et al.  An improved univariate global optimization algorithm with improved linear lower bounding functions , 1996, J. Glob. Optim..

[22]  Francesco Archetti,et al.  A survey on the global optimization problem: General theory and computational approaches , 1984, Ann. Oper. Res..

[23]  W. Baritompa,et al.  Equivalent Methods for Global Optimization , 1996 .

[24]  A. Zilinskas,et al.  On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions , 1999 .

[25]  R. G. Strongin,et al.  Minimization of multiextremal functions under nonconvex constraints , 1986 .

[26]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[27]  Pradeep B. Deshpande,et al.  A computer algorithm for optimized control , 1985 .

[28]  Stefano Lucidi On the role of continuously differentiable exact penalty functions in constrained global optimization , 1994, J. Glob. Optim..

[29]  Fabio Schoen,et al.  An adaptive stochastic global optimization algorithm for one-dimensional functions , 1995, Ann. Oper. Res..

[30]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[31]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[32]  Yaroslav D. Sergeyev,et al.  An algorithm for solving global optimization problems with nonlinear constraints , 1995, J. Glob. Optim..