Torque Feedforward Control Technique for Permanent-Magnet Synchronous Motors

This paper proposes a torque control method for interior permanent-magnet (IPM) motors operating in a wide speed range requiring high torque/power accuracy and a fast dynamic response. Using the fact that the motor parameters are nonlinear and significantly vary with direct and quadrature current operating points, a new optimal operating plane is generated. This operating plane combines the maximum torque per ampere (MTPA) curve, current limit circle, and maximum torque per volt (MTPV) curve, voltage limitations, and torque calculation under the nonlinear parameter variations. As a result, new feedforward tables are generated, which make full use of measured motor parameters. The new torque and flux regulators built around the feedforward tables provide a fast dynamic response and accurate steady-state torque/power production. The proposed controller was implemented and successfully tested on a 105-kW IPM motor electric drive used in a fuel-cell vehicle program.

[1]  Thomas M. Jahns,et al.  Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives , 1986, IEEE Transactions on Industry Applications.

[2]  N. Bianchi,et al.  Magnetic models of saturated interior permanent magnet motors based on finite element analysis , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[3]  Bing Cheng,et al.  Torque Feedforward Control Technique for Permanent Magnet Synchronous Motors , 2007, IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society.

[4]  M. Sanada,et al.  Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled Permanent Magnet Synchronous Motor Drives , 1994 .

[5]  G. Gallegos-Lopez,et al.  Optimum torque control of permanent-magnet AC Machines in the field-weakened region , 2004, IEEE Transactions on Industry Applications.

[6]  S. Morimoto,et al.  Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity , 1990 .

[7]  Joachim Holtz,et al.  On continuous control of PWM inverters in the overmodulation range including the six-step mode , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[8]  Seung-Ki Sul,et al.  New field weakening technique for high saliency interior permanent magnet motor , 2003, 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003..

[9]  M. Trlep,et al.  Evaluation of saturation and cross-magnetization effects in interior permanent magnet synchronous motor , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[10]  S. Hiti,et al.  Identification of machine parameters of a synchronous motor , 2003, IEEE Transactions on Industry Applications.