On the Evolution of Phenotypic Exploration Distributions

In nature, phenotypic variability is highly structured with respect to correlations between different phenotypic traits. In this paper we argue that this structuredness can be understood as the outcome of an adaptive process of phenotypic exploration distributions, similar to the adaptation of the search distribution in heuristic search schemes or Estimation-of-Distribution Algorithms. The key ingredient of this process is a non-trivial genotype-phenotype mapping: We rigorously define non-triviality, in which case neutral traits (as a generalization of strategy parameters) influence phenotype evolution by determining exploration distributions. Our main result is the description of the evolution of exploration distributions themselves in terms of an ordinary evolution equation. Accordingly, the “fitness” of an exploration distribution is proportional to its similarity (in the sense of the Kullback-Leibler divergence) to the fitness distribution over phenotype space. Hence, exploration distributions evolve such that dependencies and correlations between phenotypic variables in selection are naturally adopted by the way evolution explores phenotype space.

[1]  G. Wagner,et al.  A POPULATION GENETIC THEORY OF CANALIZATION , 1997, Evolution; international journal of organic evolution.

[2]  M. Kimura,et al.  DNA and the neutral theory. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  G. Wagner,et al.  The topology of the possible: formal spaces underlying patterns of evolutionary change. , 2001, Journal of theoretical biology.

[4]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation I: General Formalism , 2000, Genetic Programming and Evolvable Machines.

[5]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Pollack,et al.  A computational model of symbiotic composition in evolutionary transitions. , 2003, Bio Systems.

[7]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[8]  M. Newman,et al.  Effects of neutral selection on the evolution of molecular species , 1997, adap-org/9712005.

[9]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[10]  P. Schuster Landscapes and molecular evolution , 1997 .

[11]  Christian M. Reidys,et al.  Neutrality in fitness landscapes , 2001, Appl. Math. Comput..

[12]  Franz Rothlauf,et al.  Redundant Representations for Genetic and Evolutionary Algorithms , 2002 .

[13]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[14]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[15]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[16]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[17]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[18]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[19]  P. Callaerts,et al.  Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. , 1995, Science.

[20]  M. Vose The Simple Genetic Algorithm , 1999 .

[21]  M. Shackleton,et al.  An investigation of redundant genotype-phenotype mappings and their role in evolutionary search , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[22]  T. Back,et al.  On the behavior of evolutionary algorithms in dynamic environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.

[24]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[25]  H. Waelbroeck,et al.  Codon Bias and Mutability in HIV Sequences , 1997, Journal of Molecular Evolution.

[26]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[27]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[28]  Lee Altenberg,et al.  Genome Growth and the Evolution of the Genotype-Phenotype Map , 1995, Evolution and Biocomputation.

[29]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[30]  Marc Toussaint,et al.  Neutrality: a necessity for self-adaptation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[31]  P. Schuster,et al.  IR-98-039 / April Continuity in Evolution : On the Nature of Transitions , 1998 .

[32]  S. Rice THE EVOLUTION OF CANALIZATION AND THE BREAKING OF VON BAER'S LAWS: MODELING THE EVOLUTION OF DEVELOPMENT WITH EPISTASIS , 1998, Evolution; international journal of organic evolution.

[33]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[34]  Marc Toussaint,et al.  Self-adaptive exploration in evolutionary search , 2001, ArXiv.