Estimating sparse precision matrices

Author(s): Padmanabhan, N; White, M; Zhou, HH; O'Connell, R | Abstract: © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

[1]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[2]  Scott Dodelson,et al.  The Effect of Covariance Estimator Error on Cosmological Parameter Constraints , 2013, 1304.2593.

[3]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[4]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[5]  U. Seljak,et al.  Analytic model for the matter power spectrum, its covariance matrix and baryonic effects , 2014, 1407.0060.

[6]  Harrison H. Zhou,et al.  Asymptotic normality and optimalities in estimation of large Gaussian graphical models , 2013, 1309.6024.

[7]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[8]  A. Sánchez,et al.  Improving the precision matrix for precision cosmology , 2015, 1508.03162.

[9]  A. Cuesta,et al.  A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations – II. Fitting techniques , 2012, 1202.0091.

[10]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[11]  J. Grieb,et al.  Gaussian covariance matrices for anisotropic galaxy clustering measurements , 2015, 1509.04293.

[12]  W. Percival,et al.  Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance , 2011, 1111.6596.

[13]  Benjamin Joachimi,et al.  Estimating cosmological parameter covariance , 2014, 1402.6983.

[14]  L. Samushia,et al.  Estimating the power spectrum covariance matrix with fewer mock samples , 2015, 1509.00064.

[15]  M. Takada,et al.  Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix , 2012, 1207.6322.

[16]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[17]  C. Reinsch Smoothing by spline functions , 1967 .

[18]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[19]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[20]  Hugo J. Woerdeman,et al.  Maximum Entropy Elements in the Intersection of an Affine Space and the Cone of Positive Definite Matrices , 1995, SIAM J. Matrix Anal. Appl..

[21]  M. Takada,et al.  Power spectrum super-sample covariance , 2013, 1302.6994.

[22]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[23]  J. Harnois-Déraps,et al.  Non-Gaussian Error in Galaxy Survey (Part 1) , 2011, 1109.5746.