Electrogenerated Chemiluminescence of Semiconductor Nanoparticles and Their Applications in Biosensors

Compared to fluorescence, electrogenerated chemiluminescence (ECL) can be a superior analytical tool in terms of sensitivity and signal-to-noise ratios due to the absence of background emissions from unwanted photoexcitation. Semiconductor nanoparticles (NPs) are highly promising in many analytical applications, because they can produce stable ECL and possess surface-dependent, tuneable ECL properties. This minireview deals with the brief overview of ECL energetics and processes; the current progress of ECL of semiconductor NPs; and recent advances in biological sensing based on ECL of semiconductor NPs. The current challenges and perspectives on ECL of semiconductor NPs and their biological sensing applications are also discussed.

[1]  Haibo Li,et al.  Study for the electrochemical deposition on single carbon fiber and electrochemiluminescence of ZnO nanostructures , 2013 .

[2]  Jean-Louis Marty,et al.  Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods , 2015 .

[3]  M. Duffy,et al.  Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? , 2001, Clinical chemistry.

[4]  A. Knight,et al.  Indirect, ion-annihilation electrogenerated chemiluminescence and its application to the determination of aromatic tertiary amines , 1995 .

[5]  Guobao Xu,et al.  A Review on Bio-macromolecular Imprinted Sensors and Their Applications , 2016 .

[6]  J. Ihm,et al.  Electronic structure of zinc-blende-wurtzite interfaces: ZnS-ZnS (111-0001) and ZnSe-ZnSe (111-0001) , 1980 .

[7]  S. Cosnier,et al.  Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. , 2015, Analytical chemistry.

[8]  Brad A. Kairdolf,et al.  Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. , 2017, Analytical chemistry.

[9]  Xing Li,et al.  A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. , 2014, Biosensors & bioelectronics.

[10]  F. V. Veggel,et al.  Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine , 2008 .

[11]  H. Ju,et al.  Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. , 2007, Analytical chemistry.

[12]  J. Hafner,et al.  Shape-dependent plasmon resonances of gold nanoparticles , 2008 .

[13]  Suning Wang,et al.  Highly Efficient Dual-Color Electrochemiluminescence from BODIPY-Capped PbS Nanocrystals. , 2015, Journal of the American Chemical Society.

[14]  Igor L. Medintz,et al.  Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging , 2013, Applied spectroscopy.

[15]  Jing‐Juan Xu,et al.  Electrochemiluminescence ratiometry: a new approach to DNA biosensing. , 2013, Analytical chemistry.

[16]  Huaping Peng,et al.  Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein , 2017 .

[17]  A. Bard,et al.  Electrogenerated Chemiluminescence of CdSe Nanocrystals , 2002 .

[18]  E. Chandross,et al.  On the mechanism of the electrochemiluminescence of aromatic hydrocarbons in aprotic solvents , 1968 .

[19]  Chad A Mirkin,et al.  Colloidal gold and silver triangular nanoprisms. , 2009, Small.

[20]  A. Bard,et al.  Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. , 2001, Journal of the American Chemical Society.

[21]  Q. Wei,et al.  Efficient Enhancement of Electrochemiluminescence from Cadmium Sulfide Quantum Dots by Glucose Oxidase Mimicking Gold Nanoparticles for Highly Sensitive Assay of Methyltransferase Activity. , 2016, Analytical chemistry.

[22]  Sung Jun Lim,et al.  Surface-dependent, ligand-mediated photochemical etching of CdSe nanoplatelets. , 2012, Journal of the American Chemical Society.

[23]  D. Ma,et al.  Development of functional nanostructures and their applications in catalysis and solar cells , 2016 .

[24]  I. Rubinstein,et al.  Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids , 1981 .

[25]  R. Dinis-Oliveira Heterogeneous and homogeneous immunoassays for drug analysis. , 2014, Bioanalysis.

[26]  Jun‐Jie Zhu,et al.  Recent Advances in Electrochemiluminescence Analysis. , 2017, Analytical chemistry.

[27]  Jing Wang,et al.  Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. , 2011, Analytical chemistry.

[28]  Stephen G. Hickey,et al.  Highly Luminescent Water-Soluble CdTe Quantum Dots , 2003 .

[29]  A. Nurmikko What future for quantum dot-based light emitters? , 2015, Nature nanotechnology.

[30]  Yueping Fang,et al.  Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO , 2008 .

[31]  J. Nan,et al.  Preparation, characterization and the electrogenerated chemiluminescence behavior of WO3 nanocrystals , 2011 .

[32]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[33]  James P Chambers,et al.  Biosensor recognition elements. , 2008, Current issues in molecular biology.

[34]  Martin M. F. Choi,et al.  Electrogenerated chemiluminescence of anatase TiO₂ nanotubes film. , 2011, Talanta.

[35]  Heyou Han,et al.  Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. , 2007, Analytica chimica acta.

[36]  H. Ju,et al.  Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. , 2008, Analytical chemistry.

[37]  V. Grillo,et al.  Optical properties of single wurtzite/zinc-blende ZnSe nanowires grown at low temperature , 2015 .

[38]  Wei Chen,et al.  Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates , 2002 .

[39]  N. Danielson,et al.  Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) , 1987 .

[40]  Shaowei Chen,et al.  Alkanethiolate-Protected PbS Nanoclusters: Synthesis, Spectroscopic and Electrochemical Studies , 2000 .

[41]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[42]  Allen J. Bard,et al.  Electrogenerated Chemiluminescence. 30. Electrochemical Oxidation of Oxalate Ion in the Presence of Luminescers in Acetonitrile Solutions , 1977 .

[43]  Wei Wen,et al.  Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. , 2016, Biosensors & bioelectronics.

[44]  D. Zheng,et al.  Adsorptive Stripping Voltammetric Detection of Tea Polyphenols at Multiwalled Carbon Nanotubes-Chitosan Composite Electrode , 2009 .

[45]  Jinghua Yu,et al.  Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy. , 2012, Lab on a chip.

[46]  Q. Ma,et al.  Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles. , 2016, Analytica chimica acta.

[47]  M Valcárcel,et al.  Semiconductor and carbon-based fluorescent nanodots: the need for consistency. , 2016, Chemical communications.

[48]  M. El-Sayed Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. , 2004, Accounts of chemical research.

[49]  Xing Li,et al.  A single antibody sandwich electrochemiluminescence immunosensor based on protein magnetic molecularly imprinted polymers mimicking capture probes , 2013 .

[50]  J. L. Delaney,et al.  Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. , 2011, Analytical chemistry.

[51]  A. Bard,et al.  Electrogenerated chemiluminescence. VII. Influence of an external magnetic field on luminescence intensity , 1972 .

[52]  Jun‐Jie Zhu,et al.  Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[53]  H. Qi,et al.  Electrogenerated Chemiluminescence of ZnS Nanoparticles in Alkaline Aqueous Solution , 2007 .

[54]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[55]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[56]  Hua He,et al.  Core-shell nanoparticles coated with molecularly imprinted polymers: a review , 2016, Microchimica Acta.

[57]  A. Bard,et al.  Electrogenerated chemiluminescence. XXII. Generation of exciplexes in the radical ion reaction , 1975 .

[58]  Minjeong Ha,et al.  Triboelectric generators and sensors for self-powered wearable electronics. , 2015, ACS nano.

[59]  Hongyuan Chen,et al.  CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. , 2007, Analytical chemistry.

[60]  Bicai Pan,et al.  Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. , 2013, Journal of the American Chemical Society.

[61]  A. Patra,et al.  A brief overview of some physical studies on the relaxation dynamics and Förster resonance energy transfer of semiconductor quantum dots. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  F. Wise,et al.  Electrogenerated chemiluminescence from PbS quantum dots. , 2009, Nano letters.

[63]  I. Nabiev,et al.  Quantum Dot‐Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery , 2016, Chembiochem : a European journal of chemical biology.

[64]  Y. Kanemitsu,et al.  Photoluminescence enhancement and quenching of single CdSe∕ZnS nanocrystals on metal surfaces dominated by plasmon resonant energy transfer , 2008 .

[65]  P. Liu,et al.  Facet-dependent electrochemiluminescence spectrum of nanostructured ZnO , 2012, Science China Chemistry.

[66]  A. M. Salgado,et al.  The evolution and developments of immunosensors for health and environmental monitoring: problems and perspectives , 2009 .

[67]  E. Chandross,et al.  Excimer Formation and Emission via the Annihilation of Electrogenerated Aromatic Hydrocarbon Radical Cations and Anions , 1965 .

[68]  H. Ju,et al.  Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots. , 2008, The Analyst.

[69]  Y. Tong,et al.  Progress in Molecular Imprinting Electrochemiluminescence Analysis , 2015 .

[70]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[71]  A. Bard,et al.  Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA*+ cation radicals. , 2002, Journal of the American Chemical Society.

[72]  A. Knight,et al.  Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review , 1996 .

[73]  Zhenyu Lin,et al.  TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen , 2008 .

[74]  Scott T. Phillips,et al.  "Fluidic batteries" as low-cost sources of power in paper-based microfluidic devices. , 2012, Lab on a chip.

[75]  Jinghua Yu,et al.  In-situ synthesized polypyrrole-cellulose conductive networks for potential-tunable foldable power paper , 2017 .

[76]  A. Bard,et al.  Electrogenerated Chemiluminescence. 74. Photophysical, Electrochemical, and Electrogenerated Chemiluminescent Studies of Selected Nonplanar Pyrenophanes , 2004 .

[77]  David M. Hercules,et al.  Chemiluminescence Resulting from Electrochemically Generated Species , 1964, Science.

[78]  George M. Whitesides,et al.  Self-Assembly and Nanostructured Materials , 2005 .

[79]  P. Ray Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. , 2010, Chemical reviews.

[80]  Emanuel Carrilho,et al.  Paper-based ELISA. , 2010, Angewandte Chemie.

[81]  Jinghua Yu,et al.  A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative. , 2013, Chemical communications.

[82]  Haiyan Yang,et al.  Zinc oxide quantum dots synthesized by electrochemical etching of metallic zinc in organic electrolyte and their electrochemiluminescent properties , 2011 .

[83]  George M Whitesides,et al.  Electrochemical sensing in paper-based microfluidic devices. , 2010, Lab on a chip.

[84]  G. J. Hoytink Electrochemiluminescence of aromatic hydrocarbons , 1968 .

[85]  Shenguang Ge,et al.  Rechargeable battery-triggered electrochemiluminescence detection on microfluidic origami immunodevice based on two electrodes. , 2012, Chemical communications.

[86]  P E Klapper,et al.  Multiplex PCR: Optimization and Application in Diagnostic Virology , 2000, Clinical Microbiology Reviews.

[87]  George M Whitesides,et al.  FLASH: a rapid method for prototyping paper-based microfluidic devices. , 2008, Lab on a chip.

[88]  A. Bard,et al.  Electrogenerated chemiluminescence (ECL) 79.: Reductive-oxidation ECL of tris(2,2′-bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution , 2005 .

[89]  Shenguang Ge,et al.  Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. , 2012, Chemistry.

[90]  R. Memming Mechanism of the Electrochemical Reduction of Persulfates and Hydrogen Peroxide , 1969 .

[91]  Min Han,et al.  Facile synthesis of PbSe hollow nanostructure assemblies via a solid/liquid-phase chemical route and their electrogenerated chemiluminescence properties. , 2011, Chemistry.

[92]  Composition dependent magnetic properties of iron oxide-polyaniline nanoclusters , 2004, cond-mat/0407693.

[93]  Eun Jeong Cho,et al.  Applications of aptamers as sensors. , 2009, Annual review of analytical chemistry.

[94]  R. A. Andrievskii,et al.  Role of size-dependent effects and interfaces in physicochemical properties of consolidated nanomaterials , 2010 .

[95]  N. Kobayashi,et al.  Antibody engineering toward high-sensitivity high-throughput immunosensing of small molecules. , 2011, The Analyst.

[96]  Jing Li,et al.  A self-powered microfluidic origami electrochemiluminescence biosensing platform. , 2013, Chemical communications.

[97]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[98]  Guonan Chen,et al.  Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. , 2014, Analytical chemistry.

[99]  Wei Wen,et al.  Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin A , 2016 .

[100]  T. Möller,et al.  Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals. , 2005, The journal of physical chemistry. B.

[101]  X. Qu,et al.  Carbon Nanomaterials and DNA: from Molecular Recognition to Applications. , 2016, Accounts of chemical research.

[102]  Brett Houser,et al.  Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview , 2012, Archives of physiology and biochemistry.

[103]  G. Whitesides,et al.  Patterned paper as a platform for inexpensive, low-volume, portable bioassays. , 2007, Angewandte Chemie.

[104]  A. Bard,et al.  Electrogenerated Chemiluminescence of Ge Nanocrystals , 2004 .

[105]  E. Chandross,et al.  Electroluminescence in Solutions of Aromatic Hydrocarbons , 1964 .

[106]  A. Bard,et al.  Electrogenerated Chemiluminescence. 76. Excited Singlet State Emission vs Excimer Emission in Ter(9,9-diarylfluorene)s , 2003 .

[107]  Baokang Jin,et al.  Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. , 2012, Biosensors & bioelectronics.

[108]  Z. Bai,et al.  Electrochemiluminescence biosensor based on conducting poly(5-formylindole) for sensitive detection of Ramos cells. , 2013, Biomacromolecules.

[109]  A. Bard,et al.  Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles , 2004 .

[110]  Guisheng Yang,et al.  Lactam-mediated synthesis of inorganic nanoparticles and size/surface-dependent properties: a case study on zinc oxide , 2013 .

[111]  A. Bard,et al.  Chemiluminescence of Electrogenerated 9,10-Diphenylanthracene Anion Radical , 1965 .

[112]  Lindsay E. Pell,et al.  Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots , 2002, Science.

[113]  Huangxian Ju,et al.  "Off-on" electrochemiluminescence system for sensitive detection of ATP via target-induced structure switching. , 2014, Analytical chemistry.

[114]  Sara Tombelli,et al.  New trends in affinity sensing: aptamers for ligand binding , 2003 .

[115]  Heyou Han,et al.  Signal-Amplified Near-Infrared Ratiometric Electrochemiluminescence Aptasensor Based on Multiple Quenching and Enhancement Effect of Graphene/Gold Nanorods/G-Quadruplex. , 2016, Analytical chemistry.

[116]  Haibo Li,et al.  Study on electrochemiluminescence spectra of ZnO flakes. , 2013, Physical chemistry chemical physics : PCCP.

[117]  K. Shimizu,et al.  Molecularly imprinted polymer sensor arrays. , 2010, Current opinion in chemical biology.

[118]  Y. Kanemitsu,et al.  Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces , 2007 .

[119]  E. Ishikawa,et al.  Ultrasensitive Enzyme Immunoassay , 1978, Clinica chimica acta; international journal of clinical chemistry.

[120]  Zhiqiang Gao,et al.  Carbon quantum dots and their applications. , 2015, Chemical Society reviews.

[121]  Jinghua Yu,et al.  Application of SnO2 nanocrystal as novel electrochemiluminescence signal reporter for sensitive immunoassay with nanoporous PtRu alloy enhancement , 2014 .

[122]  A. Henglein,et al.  Elementary reactions of the reduction of Tl+ in aqueous solution , 1980 .

[123]  Guonan Chen,et al.  Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. , 2013, Nanoscale.

[124]  G. Whitesides,et al.  Three-dimensional microfluidic devices fabricated in layered paper and tape , 2008, Proceedings of the National Academy of Sciences.

[125]  S. Cosnier,et al.  Solid‐State Electrochemiluminescence of F‐doped SnO2 Nanocrystals and Its Sensing Application , 2012 .

[126]  C. A. Nelson,et al.  Reversible surface electronic traps in PbS quantum dot solids induced by an order-disorder phase transition in capping molecules. , 2012, Journal of the American Chemical Society.

[127]  Qinghua Zhang,et al.  Electrochemiluminescence Tuned by Electron-Hole Recombination from Symmetry-Breaking in Wurtzite ZnSe. , 2016, Journal of the American Chemical Society.

[128]  Bin Zhang,et al.  Molecular-Counting-Free and Electrochemiluminescent Single-Molecule Immunoassay with Dual-Stabilizers-Capped CdSe Nanocrystals as Labels. , 2016, Analytical chemistry.

[129]  Rajeshwari,et al.  International Symposium on Electroanalysis and Sensors in Biomedical, Environmental and Industrial Sciences , 1987 .

[130]  Jiayu Zhang,et al.  Coupling between semiconductor quantum dots and two-dimensional surface plasmons , 2005 .

[131]  Jianjun Shi,et al.  DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. , 2010, Nanoscale.

[132]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[133]  A. L. Bradley,et al.  Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots , 2006 .

[134]  Jun‐Jie Zhu,et al.  Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. , 2008, Biosensors & bioelectronics.

[135]  Peng Wu,et al.  Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. , 2014, Chemical reviews.

[136]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[137]  Jun‐Jie Zhu,et al.  Electrogenerated chemiluminescence of CdS spherical assemblies , 2005 .

[138]  Xiao Tan,et al.  Spectrum-Based Electrochemiluminescent Immunoassay with Ternary CdZnSe Nanocrystals as Labels. , 2016, Analytical chemistry.