Asymmetry and long-memory volatility: Some empirical evidence using GARCH

This paper investigates the asymmetry and long-memory volatility behavior of the Malaysian Stock Exchange daily data over a period of 1991–2005. The long-spanning data set enable us to examine piecewise before, during and after the economic crisis encountered in the Malaysian stock market. The daily index returns are adjusted for infrequent trading effect and the estimated Hurst's parameter allows us to rank the market efficiency across the periods. The leverage effect, clustering volatility and long-memory behavior of the volatility are fitted by the asymmetry GARCH models and GARCH with the inclusion of realized volatility at the final period. Across the periods, the results show the mixture of symmetry and asymmetry GARCH modeling.

[1]  C. Granger,et al.  Forecasting Volatility in Financial Markets: A Review , 2003 .

[2]  E. Xekalaki,et al.  Autoregressive Conditional Heteroscedasticity (ARCH) Models: A Review , 2004 .

[3]  Lilian Ng,et al.  The sources of GARCH: empirical evidence from an intraday returns model incorporating systematic and unique risks , 1993 .

[4]  Chris Brooks,et al.  Can portmanteau nonlinearity tests serve as general mis-specification tests? , 2000 .

[5]  Antonios Antoniou,et al.  Market Efficiency, Thin Trading and Non‐linear Behaviour: Evidence from an Emerging Market , 1997 .

[6]  Fulvio Corsi,et al.  A Simple Long Memory Model of Realized Volatility , 2004 .

[7]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[8]  L. Gil‐Alana,et al.  Modelling stochastic volatility in asset returns using fractionally integrated semiparametric techniques , 2006 .

[9]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[10]  Merton H. Miller,et al.  Mean Reversion of Standard & Poor's 500 Index Basis Changes: Arbitrage‐induced or Statistical Illusion? , 1994 .

[11]  Benjamin Miranda Tabak,et al.  Ranking efficiency for emerging equity markets II , 2005 .

[12]  B. M. Tabak,et al.  The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient , 2004 .

[13]  Stephen L Taylor,et al.  The incremental volatility information in one million foreign exchange quotations , 1997 .

[14]  Pierre Giot,et al.  Modelling daily value-at-risk using realized volatility and arch type models , 2001 .

[15]  Yiu Kuen Tse,et al.  The conditional heteroscedasticity of the yen-dollar exchange rate , 1998 .

[16]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[17]  Chris Brooks,et al.  The Effect of (Mis-Specified) GARCH Filters on the Finite Sample Distribution of the BDS Test , 1999 .

[18]  R. Engle New Frontiers for Arch Models , 2002 .

[19]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[20]  M. Martens Measuring and Forecasting S&P 500 Index-Futures Volatility Using High-Frequency Data , 2002 .

[21]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[22]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[23]  J. R. Ward,et al.  Fractals and Intrinsic Time - a Challenge to Econometricians , 1999 .

[24]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[25]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[26]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[27]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[28]  B. M. Tabak,et al.  Ranking efficiency for emerging markets , 2004 .

[29]  Robert F. Engle,et al.  Risk and Volatility: Econometric Models and Financial Practice , 2004 .

[30]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .