Optimal packings of superdisks and the role of symmetry.

Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x{1}|{2p}+|x{2}|{2p}<or=1 and thus contain a large family of both convex (p>or=0.5) and concave (0<p<0.5) particles. Our candidate maximal packing arrangements are achieved by certain families of Bravais lattice packings, and the maximal density is nonanalytic at the "circular-disk" point (p=1) and increases dramatically as p moves away from unity. Moreover, we show that the broken rotational symmetry of superdisks influences the packing characteristics in a nontrivial way.

[1]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[2]  B. M. Fulk MATH , 1992 .

[3]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[4]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[5]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Hofreiter Diophantische Approximationen , 1936 .

[7]  Aleksandar Donev,et al.  Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Lori R Hilden,et al.  Physics of amorphous solids. , 2004, Journal of pharmaceutical sciences.

[9]  S. Torquato Random Heterogeneous Materials , 2002 .

[10]  Noam D. Elkies,et al.  On the packing densities of superballs and other bodies , 1991 .

[11]  H. J. Herrmann,et al.  Granular Matter , 2001 .

[12]  Charles Radin,et al.  Densest Packing of Equal Spheres in Hyperbolic Space , 2002, Discret. Comput. Geom..

[13]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[14]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[15]  F. Stillinger,et al.  Toward the jamming threshold of sphere packings: Tunneled crystals , 2007, 0707.4263.

[16]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[17]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[18]  H. Minkowski,et al.  Diophantische Approximationen : eine Einführung in die Zahlentheorie , 1907 .

[19]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[20]  S. Torquato,et al.  Multiplicity of Generation, Selection, and Classification Procedures for Jammed Hard-Particle Packings † , 2001 .

[21]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[22]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details , 2005 .

[23]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[24]  T. Hales The Kepler conjecture , 1998, math/9811078.

[25]  Aleksandar Donev,et al.  Unusually dense crystal packings of ellipsoids. , 2004, Physical Review Letters.

[26]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[27]  A. Maritan,et al.  Symmetry, shape, and order , 2007, Proceedings of the National Academy of Sciences.

[28]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[29]  János Pach,et al.  Combinatorial Geometry , 2012 .

[30]  S Torquato,et al.  Packing, tiling, and covering with tetrahedra. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.