Functional approach to the error control in adaptive IgA schemes for elliptic boundary value problems

This work presents a numerical study of functional type a posteriori error estimates for IgA approximation schemes in the context of elliptic boundary-value problems. Along with the detailed discussion of the most crucial properties of such estimates, we present the algorithm of a reliable solution approximation together with the scheme of efficient a posteriori error bound generation-based on solving an auxiliary problem with respect to an introduced vector-valued variable. In this approach, we take advantage of B-(THB-)spline's high smoothness for the auxiliary vector function reconstruction, which, at the same time, allows to use much coarser meshes and decrease the number of unknowns substantially. The most representative numerical results, obtained during a systematic testing of error estimates, are presented in the second part of the paper. The efficiency of the obtained error bounds is analysed from both the error estimation (indication) and the computational expenses points of view. Several examples illustrate that functional error estimates (alternatively referred to as the majorants and minorants of deviation from an exact solution) perform a much sharper error control than, for instance, residual-based error estimates. Simultaneously, assembling and solving the routines for an auxiliary variable reconstruction which generate the majorant of an error can be executed several times faster than the routines for a primal unknown.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[3]  A. Smolianski,et al.  Functional-Type A Posteriori Error Estimates for Mixed Finite Element Methods , 2005 .

[4]  Meng Wu,et al.  Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  S. Repin,et al.  A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality , 2013, 1312.4361.

[7]  Stefan A. Sauter,et al.  A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.

[8]  Trond Kvamsdal,et al.  On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .

[9]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[10]  Sergey Repin,et al.  A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .

[11]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[12]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[13]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[14]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[15]  S. Repin,et al.  Exact constants in Poincaré type inequalities for functions with zero mean boundary traces , 2012, 1211.2224.

[16]  K. Johannessen An adaptive isogeometric finite element analysis , 2009 .

[17]  Ulrich Langer,et al.  Guaranteed error control bounds for the stabilised space-time IgA approximations to parabolic problems , 2017, ArXiv.

[18]  Bert Jüttler,et al.  Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.

[19]  Stefan A. Sauter,et al.  Two-Sided A Posteriori Error Estimates for Mixed Formulations of Elliptic Problems , 2007, SIAM J. Numer. Anal..

[20]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[21]  Satyendra K. Tomar,et al.  Guaranteed and sharp a posteriori error estimates in isogeometric analysis , 2013, Comput. Math. Appl..

[22]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[23]  N. Nguyen‐Thanh,et al.  Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions , 2017 .

[24]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[25]  Sergey Repin,et al.  A posteriori error estimates for approximate solutions to variational problems with strongly convex functionals , 1999 .

[26]  S. Repin,et al.  Guaranteed and robust error bounds for nonconforming approximations of elliptic problems , 2011 .

[27]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[28]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[29]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[30]  Sergey Repin,et al.  Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems , 2009 .

[31]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[32]  Sergey Repin,et al.  Accuracy Verification Methods , 2014 .

[33]  Bert Jüttler,et al.  Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..

[34]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[35]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[36]  Trond Kvamsdal,et al.  Simple a posteriori error estimators in adaptive isogeometric analysis , 2015, Comput. Math. Appl..

[37]  S. Repin,et al.  Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincaré inequalities for traces of functions on the boundary , 2016, Differential Equations.

[38]  Sergey I. Repin Estimates of Constants in Boundary-Mean Trace Inequalities and Applications to Error Analysis , 2013, ENUMATH.

[39]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[40]  Luca Dedè,et al.  B-spline goal-oriented error estimators for geometrically nonlinear rods , 2012 .

[41]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[42]  Bert Jüttler,et al.  On the linear independence of truncated hierarchical generating systems , 2016, J. Comput. Appl. Math..

[43]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[44]  Bert Jüttler,et al.  A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..

[45]  Cv Clemens Verhoosel,et al.  Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .

[46]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[47]  K. Friedrichs On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .

[48]  M. Poincaré Sur les équations de la physique mathématique , 1894 .

[49]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[50]  S. Repin,et al.  Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems , 2009 .

[51]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[52]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[53]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[54]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[55]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[56]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[57]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[58]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[59]  Daniel Peterseim,et al.  Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..

[60]  Carlotta Giannelli,et al.  Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.

[61]  Sergey Repin,et al.  A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions , 2004 .

[62]  P. Deuflhard Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .

[63]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[64]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[65]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[66]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[67]  Henri Poincaré,et al.  Sur les Equations aux Derivees Partielles de la Physique Mathematique , 1890 .

[68]  Svetlana Matculevich,et al.  Explicit Constants in Poincaré-Type Inequalities for Simplicial Domains and Application to A Posteriori Estimates , 2016, Comput. Methods Appl. Math..

[69]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[70]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[71]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[72]  C. V. Verhoosel,et al.  Isogeometric analysis-based goal-oriented error estimation for free-boundary problems , 2011 .

[73]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.