Functional approach to the error control in adaptive IgA schemes for elliptic boundary value problems
暂无分享,去创建一个
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[3] A. Smolianski,et al. Functional-Type A Posteriori Error Estimates for Mixed Finite Element Methods , 2005 .
[4] Meng Wu,et al. Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..
[5] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[6] S. Repin,et al. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality , 2013, 1312.4361.
[7] Stefan A. Sauter,et al. A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.
[8] Trond Kvamsdal,et al. On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .
[9] P. Deuflhard,et al. The cascadic multigrid method for elliptic problems , 1996 .
[10] Sergey Repin,et al. A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .
[11] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[12] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[13] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[14] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[15] S. Repin,et al. Exact constants in Poincaré type inequalities for functions with zero mean boundary traces , 2012, 1211.2224.
[16] K. Johannessen. An adaptive isogeometric finite element analysis , 2009 .
[17] Ulrich Langer,et al. Guaranteed error control bounds for the stabilised space-time IgA approximations to parabolic problems , 2017, ArXiv.
[18] Bert Jüttler,et al. Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.
[19] Stefan A. Sauter,et al. Two-Sided A Posteriori Error Estimates for Mixed Formulations of Elliptic Problems , 2007, SIAM J. Numer. Anal..
[20] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[21] Satyendra K. Tomar,et al. Guaranteed and sharp a posteriori error estimates in isogeometric analysis , 2013, Comput. Math. Appl..
[22] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[23] N. Nguyen‐Thanh,et al. Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions , 2017 .
[24] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[25] Sergey Repin,et al. A posteriori error estimates for approximate solutions to variational problems with strongly convex functionals , 1999 .
[26] S. Repin,et al. Guaranteed and robust error bounds for nonconforming approximations of elliptic problems , 2011 .
[27] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[28] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[29] G. Sangalli,et al. IsoGeometric analysis using T-splines on two-patch geometries , 2011 .
[30] Sergey Repin,et al. Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems , 2009 .
[31] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[32] Sergey Repin,et al. Accuracy Verification Methods , 2014 .
[33] Bert Jüttler,et al. Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..
[34] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[35] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[36] Trond Kvamsdal,et al. Simple a posteriori error estimators in adaptive isogeometric analysis , 2015, Comput. Math. Appl..
[37] S. Repin,et al. Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincaré inequalities for traces of functions on the boundary , 2016, Differential Equations.
[38] Sergey I. Repin. Estimates of Constants in Boundary-Mean Trace Inequalities and Applications to Error Analysis , 2013, ENUMATH.
[39] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[40] Luca Dedè,et al. B-spline goal-oriented error estimators for geometrically nonlinear rods , 2012 .
[41] Günther Greiner,et al. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .
[42] Bert Jüttler,et al. On the linear independence of truncated hierarchical generating systems , 2016, J. Comput. Appl. Math..
[43] Peter Schlattmann,et al. Theory and Algorithms , 2009 .
[44] Bert Jüttler,et al. A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..
[45] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[46] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[47] K. Friedrichs. On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .
[48] M. Poincaré. Sur les équations de la physique mathématique , 1894 .
[49] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[50] S. Repin,et al. Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems , 2009 .
[51] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[52] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[53] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[54] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[55] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[56] Thomas J. R. Hughes,et al. Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .
[57] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[58] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[59] Daniel Peterseim,et al. Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..
[60] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[61] Sergey Repin,et al. A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions , 2004 .
[62] P. Deuflhard. Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .
[63] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[64] Bert Jüttler,et al. THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .
[65] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[66] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[67] Henri Poincaré,et al. Sur les Equations aux Derivees Partielles de la Physique Mathematique , 1890 .
[68] Svetlana Matculevich,et al. Explicit Constants in Poincaré-Type Inequalities for Simplicial Domains and Application to A Posteriori Estimates , 2016, Comput. Methods Appl. Math..
[69] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[70] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[71] G. Gustafson,et al. Boundary Value Problems of Mathematical Physics , 1998 .
[72] C. V. Verhoosel,et al. Isogeometric analysis-based goal-oriented error estimation for free-boundary problems , 2011 .
[73] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.