Matrix Autoregressive Model with Vector Time Series Covariates for Spatio-Temporal Data

In this paper, we propose a new model for forecasting time series data distributed on a matrix-shaped spatial grid, using the historical spatio-temporal data together with auxiliary vector-valued time series data. We model the matrix time series as an auto-regressive process, where a future matrix is jointly predicted by the historical values of the matrix time series as well as an auxiliary vector time series. The matrix predictors are associated with row/column-specific autoregressive matrix coefficients that map the predictors to the future matrices via a bi-linear transformation. The vector predictors are mapped to matrices by taking mode product with a 3D coefficient tensor. Given the high dimensionality of the tensor coefficient and the underlying spatial structure of the data, we propose to estimate the tensor coefficient by estimating one functional coefficient for each covariate, with 2D input domain, from a Reproducing Kernel Hilbert Space. We jointly estimate the autoregressive matrix coefficients and the functional coefficients under a penalized maximum likelihood estimation framework, and couple it with an alternating minimization algorithm. Large sample asymptotics of the estimators are established and performances of the model are validated with extensive simulation studies and a real data application to forecast the global total electron content distributions.

[1]  Yang Chen,et al.  Complete Global Total Electron Content Map Dataset based on a Video Imputation Algorithm VISTA , 2023, Scientific data.

[2]  W. Younas,et al.  Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of Solar Cycle 24 , 2021, Advances in Space Research.

[3]  S. Zou,et al.  Hemispheric Asymmetries in the Mid‐latitude Ionosphere During the September 7–8, 2017 Storm: Multi‐instrument Observations , 2021, Journal of Geophysical Research: Space Physics.

[4]  Yuekai Sun,et al.  Matrix completion methods for the total electron content video reconstruction , 2020, The Annals of Applied Statistics.

[5]  Yibin Yao,et al.  Forecasting Global Ionospheric TEC Using Deep Learning Approach , 2020, Space Weather.

[6]  Yun Yang,et al.  Non-asymptotic Analysis for Nonparametric Testing , 2020, COLT 2020.

[7]  Rong Chen,et al.  Modeling Multivariate Spatial-Temporal Data with Latent Low-Dimensional Dynamics , 2020, 2002.01305.

[8]  Yu Wang,et al.  The Sylvester Graphical Lasso (SyGlasso) , 2020, AISTATS.

[9]  Jstor Journal of Economic Perspectives , 2019, AEA Papers and Proceedings.

[10]  Jian Yang,et al.  Sparse Tensor Additive Regression , 2019, J. Mach. Learn. Res..

[11]  Rong Chen,et al.  Autoregressive models for matrix-valued time series , 2018, Journal of Econometrics.

[12]  Haoyang Cheng,et al.  An RKHS-based approach to double-penalized regression in high-dimensional partially linear models , 2018, J. Multivar. Anal..

[13]  Anima Anandkumar,et al.  Tensor Regression Networks , 2017, J. Mach. Learn. Res..

[14]  Kristjan H. Greenewald,et al.  Tensor graphical lasso (TeraLasso) , 2017, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[15]  Xiao Wang,et al.  Generalized Scalar-on-Image Regression Models via Total Variation , 2017, Journal of the American Statistical Association.

[16]  Eric F. Lock,et al.  Tensor-on-Tensor Regression , 2017, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[17]  Hachem Kadri,et al.  Low-Rank Regression with Tensor Responses , 2016, NIPS.

[18]  Lexin Li,et al.  STORE: Sparse Tensor Response Regression and Neuroimaging Analysis , 2016, J. Mach. Learn. Res..

[19]  E. Lock,et al.  Supervised multiway factorization. , 2016, Electronic journal of statistics.

[20]  B. Reich,et al.  Scalar‐on‐image regression via the soft‐thresholded Gaussian process , 2016, Biometrika.

[21]  Xin Zhang,et al.  Parsimonious Tensor Response Regression , 2015, 1501.07815.

[22]  Guang Cheng,et al.  Nonparametric inference in generalized functional linear models , 2014, 1405.6655.

[23]  Guang Cheng,et al.  Joint asymptotics for semi-nonparametric regression models with partially linear structure , 2013, 1311.2628.

[24]  Rodney A. Kennedy,et al.  Classification and construction of closed-form kernels for signal representation on the 2-sphere , 2013, Optics & Photonics - Optical Engineering + Applications.

[25]  Xiaoshan Li,et al.  Tucker Tensor Regression and Neuroimaging Analysis , 2013, Statistics in biosciences.

[26]  Ambuj Tewari,et al.  On the Nonasymptotic Convergence of Cyclic Coordinate Descent Methods , 2013, SIAM J. Optim..

[27]  Guang Cheng,et al.  Local and global asymptotic inference in smoothing spline models , 2012, 1212.6788.

[28]  Peter D Hoff,et al.  SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA. , 2012, The annals of applied statistics.

[29]  T. Tony Cai,et al.  Minimax and Adaptive Prediction for Functional Linear Regression , 2012 .

[30]  Hongtu Zhu,et al.  Tensor Regression with Applications in Neuroimaging Data Analysis , 2012, Journal of the American Statistical Association.

[31]  Hung Hung,et al.  Matrix variate logistic regression model with application to EEG data. , 2011, Biostatistics.

[32]  M. Yuan,et al.  A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression , 2010, 1211.2607.

[33]  Peter D. Hoff,et al.  Separable covariance arrays via the Tucker product, with applications to multivariate relational data , 2010, 1008.2169.

[34]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[35]  A. W. Vaart,et al.  Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.

[36]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[37]  Anthea J. Coster,et al.  Automated GPS processing for global total electron content data , 2006 .

[38]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[39]  Chong Gu Smoothing Spline Anova Models , 2002 .

[40]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[41]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[42]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[43]  C. Sims,et al.  Vector Autoregressions , 1999 .

[44]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .