Divorced Eutectic Solidification of Mg-Al Alloys

We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed $$\mathrm{\alpha} $$α-Mg phase followed by the nucleation of the $$\mathrm{\beta} $$β-phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

[1]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[2]  A. L. Greer,et al.  Modelling of inoculation of metallic melts : Application to grain refinement of aluminium by Al-Ti-B , 2000 .

[3]  D. Stefanescu,et al.  Modeling of the Divorced Eutectic Solidification of Spheroidal Graphite Cast Iron , 2010 .

[4]  Ingo Steinbach,et al.  A generalized field method for multiphase transformations using interface fields , 1999 .

[5]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[6]  I. Steinbach Pattern formation in constrained dendritic growth with solutal buoyancy , 2009 .

[7]  I. Steinbach,et al.  2D and 3D phase-field simulations of lamella and fibrous eutectic growth , 2002 .

[8]  Ingo Steinbach,et al.  Why Solidification? Why Phase-Field? , 2013 .

[9]  Ingo Steinbach,et al.  Phase Field Simulation of Equiaxed Solidification in Technical Alloys , 2006 .

[10]  D. Thierry,et al.  The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe , 2006 .

[11]  S. Xiong,et al.  Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process , 2012 .

[12]  D. Stefanescu,et al.  Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons , 2015 .

[13]  M. Liu,et al.  Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 , 2008 .

[14]  A. Karma,et al.  New insights into the morphological stability of eutectic and peritectic coupled growth , 2004 .

[15]  I. Steinbach Phase-field models in materials science , 2009 .

[16]  D. Höche,et al.  Mikrogalvanische Korrosion am Magnesium‐Aluminium System – Detaillierte elektrochemische Einblicke mittels FEM‐Simulationen , 2013 .

[17]  A. Hellawell,et al.  A simple model for grain refinement during solidification , 1974 .

[18]  H. I. Laukli,et al.  Divorced eutectic in a HPDC magnesium–aluminum alloy , 2004 .

[19]  Ingo Steinbach,et al.  Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale , 2013 .

[20]  Christoph Beckermann,et al.  Simulation of convection and ripening in a binary alloy mush using the phase-field method , 1999 .

[21]  A. Karma,et al.  Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg , 2006 .