Representations of quiver Hecke algebras via Lyndon bases

A new class of algebras has been introduced by Khovanov and Lauda and independently by Rouquier. These algebras categorify one-half of the Quantum group associated to arbitrary Cartan data. In this paper, we use the combinatorics of Lyndon words to construct the irreducible representations of those algebras associated to Cartan data of finite type. This completes the classification of simple modules for the quiver Hecke algebra initiated by Kleshchev and Ram.

[1]  J. Kujawa,et al.  Degenerate affine Hecke–Clifford algebras and type Q Lie superalgebras , 2009, 0904.0499.

[2]  M. Kashiwara,et al.  On crystal bases of the $Q$-analogue of universal enveloping algebras , 1991 .

[3]  M. Rosso Quantum groups and quantum shuffles , 1998 .

[4]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[5]  M. Rosso,et al.  Groupes quantiques et algèbres de battage quantiques , 1995 .

[6]  B. Leclerc Dual canonical bases, quantum shuffles and q-characters , 2002, math/0209133.

[7]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .

[8]  Aaron D. Lauda,et al.  Crystals from categorified quantum groups , 2009, 0909.1810.

[9]  A. Kleshchev Linear and Projective Representations of Symmetric Groups , 2005 .

[11]  J. Brundan,et al.  Hecke-Clifford superalgebras, crystals of type _{2ℓ}⁽²⁾ and modular branching rules for ̂_{} , 2001 .

[12]  I. Bernstein,et al.  Induced representations of reductive ${\mathfrak {p}}$-adic groups. I , 1977 .

[13]  Arun Ram,et al.  Standard Lyndon bases of Lie algebras and enveloping algebras , 1995 .

[14]  Takeshi Suzuki,et al.  Duality between sln(C) and the Degenerate Affine Hecke Algebra , 1998 .

[15]  J. Brundan,et al.  Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.

[16]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[17]  R. Rouquier 2-Kac-Moody algebras , 2008, 0812.5023.

[18]  Arun Ram,et al.  Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words , 2009, 0909.1984.

[19]  A diagrammatic approach to categorification of quantum groups II , 2008, 0803.4121.

[20]  Arun Ram,et al.  Homogeneous representations of Khovanov-Lauda algebras , 2008, 0809.0557.