Particle Swarm Optimization for the Bi-objective Degree constrained Minimum Spanning Tree

This paper presents a particle swarm optimization algorithm for the multi-criteria degree constrained minimum spanning tree problem. The operators for the particle's velocity are based upon local search and path-relinking procedures. The proposed heuristic is compared with other evolutionary algorithm presented previously for the same problem. A computational experiment is reported. The results show that the method proposed in this paper finds high quality solutions for the problem.

[1]  Khalil S. Hindi,et al.  Minimum-weight spanning tree algorithms A survey and empirical study , 2001, Comput. Oper. Res..

[2]  Bryant A. Julstrom,et al.  Edge sets: an effective evolutionary coding of spanning trees , 2003, IEEE Trans. Evol. Comput..

[3]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers , 2002 .

[4]  Joshua D. Knowles,et al.  A comparison of encodings and algorithms for multiobjective minimum spanning tree problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[5]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[6]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[7]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[8]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[11]  Ronald L. Graham,et al.  On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.

[12]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[13]  Chao-Hsien Chu,et al.  Genetic algorithms for communications network design - an empirical study of the factors that influence performance , 2001, IEEE Trans. Evol. Comput..

[14]  Ulf Grenander,et al.  A stochastic nonlinear model for coordinated bird flocks , 1990 .

[15]  R. Prim Shortest connection networks and some generalizations , 1957 .

[16]  Godfrey C. Onwubolu,et al.  Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization , 2004 .

[17]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[18]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[19]  M. Ehrgott Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .

[20]  Gary Chartrand,et al.  Applied and algorithmic graph theory , 1992 .