A Posteriori Error Estimates Based on the Polynomial Preserving Recovery

Superconvergence of order $O(h^{1+\rho})$, for some $\rho > 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.

[1]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[3]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[4]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[5]  N. Wiberg,et al.  A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L2 norms , 1994 .

[6]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[8]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[9]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[12]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[13]  Ahmed Naga,et al.  A Meshless Gradient Recovery Method Part I: Superconvergence Property , 2002 .

[14]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[15]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[16]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[17]  A Review of A Posteriori Error Estimation , 1996 .

[18]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[19]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[20]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.