Comparative RNA Genomics.

[1]  Jan Gorodkin,et al.  The identification and functional annotation of RNA structures conserved in vertebrates , 2017, Genome research.

[2]  Patrick R. Wright,et al.  Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP , 2017, BMC Genomics.

[3]  Peter F. Stadler,et al.  RIsearch2: suffix array-based large-scale prediction of RNA–RNA interactions and siRNA off-targets , 2017, Nucleic acids research.

[4]  Paul P. Gardner,et al.  A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life , 2016, Bioinform..

[5]  S. Eddy,et al.  A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs , 2016, Nature Methods.

[6]  P. Stadler,et al.  Phylogenetic distribution of plant snoRNA families , 2016, BMC Genomics.

[7]  Florian Eggenhofer,et al.  RNAlien – Unsupervised RNA family model construction , 2016, Nucleic acids research.

[8]  P. Stadler,et al.  An updated human snoRNAome , 2016, Nucleic acids research.

[9]  P. Stadler,et al.  RNA folding with hard and soft constraints , 2016, Algorithms for Molecular Biology.

[10]  Nian Liu,et al.  N6-methyladenosine–encoded epitranscriptomics , 2016, Nature Structural &Molecular Biology.

[11]  P. Stadler,et al.  U6 snRNA intron insertion occurred multiple times during fungi evolution , 2016, RNA biology.

[12]  Wolfgang Stephan,et al.  A model of compensatory molecular evolution involving multiple sites in RNA molecules. , 2016, Journal of theoretical biology.

[13]  Alba Cristina Magalhaes Alves de Melo,et al.  Foldalign 2.5: multithreaded implementation for pairwise structural RNA alignment , 2015, Bioinform..

[14]  Daniel Lai,et al.  A comprehensive comparison of general RNA–RNA interaction prediction methods , 2015, Nucleic acids research.

[15]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[16]  T. Preiss,et al.  Nucleotide-Level Profiling of m⁵C RNA Methylation. , 2016, Methods in molecular biology.

[17]  M. D. Simon,et al.  Insight into lncRNA biology using hybridization capture analyses. , 2016, Biochimica et biophysica acta.

[18]  Shihua Zhang,et al.  PLNlncRbase: A resource for experimentally identified lncRNAs in plants. , 2015, Gene.

[19]  P. Kumari,et al.  cncRNAs: Bi-functional RNAs with protein coding and non-coding functions , 2015, Seminars in cell & developmental biology.

[20]  Craig L. Zirbel,et al.  RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure , 2015, PloS one.

[21]  J. Cole,et al.  Regulation of PKR by RNA: formation of active and inactive dimers. , 2015, Biochemistry.

[22]  P. Stadler,et al.  Evolution of the unspliced transcriptome , 2015, BMC Evolutionary Biology.

[23]  R. Breaker,et al.  New classes of self-cleaving ribozymes revealed by comparative genomics analysis , 2015, Nature chemical biology.

[24]  P. Stadler,et al.  Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved , 2015, RNA.

[25]  D. Bartel,et al.  Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. , 2015, Cell reports.

[26]  Daniel Gautheret,et al.  An assessment of bacterial small RNA target prediction programs , 2015, RNA biology.

[27]  C. Ponting,et al.  Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci , 2015, RNA.

[28]  Peter F. Stadler,et al.  The Expansion of Animal MicroRNA Families Revisited , 2015, Life.

[29]  Peter F. Stadler,et al.  SHAPE directed RNA folding , 2015, bioRxiv.

[30]  Alexander F. Palazzo,et al.  Non-coding RNA: what is functional and what is junk? , 2015, Front. Genet..

[31]  J. D. Mills,et al.  Conservation and tissue-specific transcription patterns of long noncoding RNAs , 2015, Journal of human transcriptome.

[32]  Jan Gorodkin,et al.  Profiling of ribose methylations in RNA by high-throughput sequencing. , 2014, Angewandte Chemie.

[33]  Robert D. Finn,et al.  Rfam 12.0: updates to the RNA families database , 2014, Nucleic Acids Res..

[34]  Shermin Pei,et al.  Sampled ensemble neutrality as a feature to classify potential structured RNAs , 2015, BMC Genomics.

[35]  D. Mathews,et al.  Dynalign II: common secondary structure prediction for RNA homologs with domain insertions , 2014, Nucleic acids research.

[36]  D. Graur,et al.  The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes , 2014, BMC Genomics.

[37]  Rocío Romero-Záliz,et al.  A multiobjective method for robust identification of bacterial small non-coding RNAs , 2014, Bioinform..

[38]  Laurence D. Hurst,et al.  Purifying Selection on Splice-Related Motifs, Not Expression Level nor RNA Folding, Explains Nearly All Constraint on Human lincRNAs , 2014, Molecular biology and evolution.

[39]  R. Raghavan,et al.  Pervasive transcription: detecting functional RNAs in bacteria , 2014, Transcription.

[40]  J. Wade,et al.  Pervasive transcription: illuminating the dark matter of bacterial transcriptomes , 2014, Nature Reviews Microbiology.

[41]  Hui Sun Leong,et al.  A global non-coding RNA system modulates fission yeast protein levels in response to stress , 2014, Nature Communications.

[42]  Rolf Backofen,et al.  CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains , 2014, Nucleic Acids Res..

[43]  K. Morris,et al.  Evolutionary conservation of long non-coding RNAs; sequence, structure, function. , 2014, Biochimica et biophysica acta.

[44]  Andrey A. Mironov,et al.  RNASurface: fast and accurate detection of locally optimal potentially structured RNA segments , 2014, Bioinform..

[45]  Peter F Stadler,et al.  Matching of Soulmates: coevolution of snoRNAs and their targets. , 2014, Molecular biology and evolution.

[46]  Frank Grützner,et al.  The evolution of lncRNA repertoires and expression patterns in tetrapods , 2014, Nature.

[47]  Qiangfeng Cliff Zhang,et al.  Landscape and variation of RNA secondary structure across the human transcriptome , 2014, Nature.

[48]  Manolis Kellis,et al.  Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals , 2014, Genome research.

[49]  R. Breaker,et al.  A widespread self-cleaving ribozyme class is revealed by bioinformatics , 2013, Nature chemical biology.

[50]  Zsuzsanna Sükösd,et al.  SCFGs in RNA Secondary Structure Prediction: A Hands-on Approach , 2014 .

[51]  Jan Gorodkin,et al.  De novo discovery of structured ncRNA motifs in genomic sequences. , 2014, Methods in molecular biology.

[52]  Jan Gorodkin,et al.  RNA structural alignments, part I: Sankoff-based approaches for structural alignments. , 2014, Methods in molecular biology.

[53]  Jan Gorodkin,et al.  RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods , 2014, Methods in Molecular Biology.

[54]  Robert Giegerich,et al.  Introduction to stochastic context free grammars. , 2014, Methods in molecular biology.

[55]  Eric P. Nawrocki,et al.  Annotating functional RNAs in genomes using Infernal. , 2014, Methods in molecular biology.

[56]  Jan Gorodkin,et al.  Structured RNAs and synteny regions in the pig genome , 2014, BMC Genomics.

[57]  Kristin Reiche,et al.  Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs , 2014, Genome Biology.

[58]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[59]  Andreas S. Richter,et al.  Comparative genomics boosts target prediction for bacterial small RNAs , 2013, Proceedings of the National Academy of Sciences.

[60]  H. Nakaya,et al.  The Intronic Long Noncoding RNA ANRASSF1 Recruits PRC2 to the RASSF1A Promoter, Reducing the Expression of RASSF1A and Increasing Cell Proliferation , 2013, PLoS genetics.

[61]  P. Stadler,et al.  Widespread purifying selection on RNA structure in mammals , 2013, Nucleic acids research.

[62]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[63]  Peter F. Stadler,et al.  RNAsnp: Efficient Detection of Local RNA Secondary Structure Changes Induced by SNPs , 2013, Human Mutation.

[64]  D. Mathews,et al.  Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots , 2013, Proceedings of the National Academy of Sciences.

[65]  J. Mattick,et al.  Structure and function of long noncoding RNAs in epigenetic regulation , 2013, Nature Structural &Molecular Biology.

[66]  J. Bujnicki,et al.  CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction , 2013, Nucleic acids research.

[67]  Svetlana A. Shabalina,et al.  The Vast, Conserved Mammalian lincRNome , 2013, PLoS Comput. Biol..

[68]  Christine E. Heitsch,et al.  Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions , 2013, Nucleic acids research.

[69]  Jan Gorodkin,et al.  RNAsnp: Efficient Detection of Local RNA Secondary Structure Changes Induced by SNPs , 2013, Human mutation.

[70]  M. Gottesman,et al.  Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies , 2012, Nucleic acids research.

[71]  Peter Clote,et al.  Integrating Chemical Footprinting Data into RNA Secondary Structure Prediction , 2012, PloS one.

[72]  Jan Gorodkin,et al.  Sequence analysis , 2022 .

[73]  Christian N. S. Pedersen,et al.  PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data , 2012, Bioinform..

[74]  Rhiju Das,et al.  Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. , 2012, Biochemistry.

[75]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[76]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[77]  Jan Gorodkin,et al.  RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model , 2012, Bioinform..

[78]  D. Delneri,et al.  Non-coding RNAs in Saccharomyces cerevisiae: what is the function? , 2012, Biochemical Society transactions.

[79]  Chris P. Ponting,et al.  Rapid Turnover of Long Noncoding RNAs and the Evolution of Gene Expression , 2012, PLoS genetics.

[80]  Rolf Backofen,et al.  Accessibility and conservation , 2012, RNA biology.

[81]  P. Stadler,et al.  LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. , 2012, RNA.

[82]  Sebastian Will,et al.  Structure-based whole-genome realignment reveals many novel noncoding RNAs , 2012, RECOMB.

[83]  Peter F. Stadler,et al.  Hidden treasures in unspliced EST data , 2012, Theory in Biosciences.

[84]  Chris P. Ponting,et al.  Identification and Properties of 1,119 Candidate LincRNA Loci in the Drosophila melanogaster Genome , 2012, Genome biology and evolution.

[85]  P. Trieu-Cuot,et al.  An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains , 2011, Nucleic acids research.

[86]  Daniel Gautheret,et al.  NAPP: the Nucleic Acid Phylogenetic Profile Database , 2011, Nucleic Acids Res..

[87]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[88]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[89]  A. Rebaï,et al.  IGD: a resource for intronless genes in the human genome. , 2011, Gene.

[90]  Andrea Tanzer,et al.  Animal snoRNAs and scaRNAs with exceptional structures , 2011, RNA biology.

[91]  A. Morillon,et al.  Pervasive transcription - Lessons from yeast. , 2011, Biochimie.

[92]  Sonja J. Prohaska,et al.  Protein-coding structured RNAs: A computational survey of conserved RNA secondary structures overlapping coding regions in drosophilids. , 2011, Biochimie.

[93]  Manolis Kellis,et al.  Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes. , 2011, Genome research.

[94]  Manolis Kellis,et al.  New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. , 2011, Genome research.

[95]  Paulo P. Amaral,et al.  The Reality of Pervasive Transcription , 2011, PLoS biology.

[96]  Rolf Backofen,et al.  Computational discovery of human coding and non-coding transcripts with conserved splice sites , 2011, Bioinform..

[97]  Matthias Zytnicki,et al.  BlastR—fast and accurate database searches for non-coding RNAs , 2011, Nucleic acids research.

[98]  Claire Francastel,et al.  When one is better than two: RNA with dual functions. , 2011, Biochimie.

[99]  Wolfgang Stephan,et al.  Selective constraints in conserved folded RNAs of drosophilid and hominid genomes. , 2011, Molecular biology and evolution.

[100]  Peter F. Stadler,et al.  PLEXY: efficient target prediction for box C/D snoRNAs , 2011, Bioinform..

[101]  Yusuke Nakamura,et al.  Association of a novel long non‐coding RNA in 8q24 with prostate cancer susceptibility , 2011, Cancer science.

[102]  Daniel Gautheret,et al.  ARNold: A web tool for the prediction of Rho-independent transcription terminators , 2011, RNA biology.

[103]  Peter F. Stadler,et al.  maxAlike: maximum likelihood-based sequence reconstruction with application to improved primer design for unknown sequences , 2010, Bioinform..

[104]  D. Spector,et al.  Direct Visualization of the Co-transcriptional Assembly of a Nuclear Body by Noncoding RNAs , 2010, Nature Cell Biology.

[105]  Rolf Backofen,et al.  PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences , 2010, Bioinform..

[106]  Tim R. Mercer,et al.  Expression of distinct RNAs from 3′ untranslated regions , 2010, Nucleic acids research.

[107]  Christian M. Reidys,et al.  RNA-RNA interaction prediction based on multiple sequence alignments , 2010, Bioinform..

[108]  Stephan H. Bernhart,et al.  RNA Accessibility in cubic time , 2011, Algorithms for Molecular Biology.

[109]  P. Sorensen,et al.  The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA , 2010, BMC Biology.

[110]  Howard Y. Chang,et al.  Genome-wide measurement of RNA secondary structure in yeast , 2010, Nature.

[111]  Peter F. Stadler,et al.  Evolution of the Long Non-coding RNAs MALAT1 and MENbeta/epsilon , 2010, BSB.

[112]  Rolf Backofen,et al.  Hierarchical folding of multiple sequence alignments for the prediction of structures and RNA-RNA interactions , 2010, Algorithms for Molecular Biology.

[113]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[114]  Peter F. Stadler,et al.  RNAsnoop: efficient target prediction for H/ACA snoRNAs , 2010, Bioinform..

[115]  Nathalie Ulryck,et al.  A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA , 2009, Nucleic acids research.

[116]  Peter F. Stadler,et al.  RNAz 2.0: Improved Noncoding RNA Detection , 2010, Pacific Symposium on Biocomputing.

[117]  R. Breaker,et al.  Extraordinary Structured Noncoding RNAs Revealed by Bacterial Metagenome Analysis , 2009, Nature.

[118]  Smadar Cohen-Chalamish,et al.  Dynamic refolding of IFN-gamma mRNA enables it to function as PKR activator and translation template. , 2009, Nature chemical biology.

[119]  P. Stadler,et al.  The tedious task of finding homologous noncoding RNA genes. , 2009, RNA.

[120]  C. Ponting,et al.  Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness , 2009, Genome Biology.

[121]  Christian M. Reidys,et al.  Partition function and base pairing probabilities for RNA-RNA interaction prediction , 2009, Bioinform..

[122]  Hamidreza Chitsaz,et al.  biRNA: Fast RNA-RNA Binding Sites Prediction , 2009, WABI.

[123]  Rolf Backofen,et al.  Fast prediction of RNA-RNA interaction , 2009, Algorithms for Molecular Biology.

[124]  Rolf Backofen,et al.  Conserved introns reveal novel transcripts in Drosophila melanogaster. , 2009, Genome research.

[125]  Hamidreza Chitsaz,et al.  A partition function algorithm for interacting nucleic acid strands , 2009, Bioinform..

[126]  D. Gautheret,et al.  SINGLE‐PASS CLASSIFICATION OF ALL NON‐CODING SEQUENCES IN A BACTERIAL GENOME USING PHYLOGENETIC PROFILES , 2009, Genome research.

[127]  Walter L. Ruzzo,et al.  Multiperm: shuffling multiple sequence alignments while approximately preserving dinucleotide frequencies , 2009, Bioinform..

[128]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[129]  T. Mituyama,et al.  MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles , 2009, Proceedings of the National Academy of Sciences.

[130]  W. Reik,et al.  The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing , 2009, Development.

[131]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[132]  Peter F. Stadler,et al.  Non-coding RNA annotation of the genome of Trichoplax adhaerens , 2009, Nucleic acids research.

[133]  D. Mathews,et al.  Accurate SHAPE-directed RNA structure determination , 2009, Proceedings of the National Academy of Sciences.

[134]  Sing-Hoi Sze,et al.  Improving accuracy of multiple sequence alignment algorithms based on alignment of neighboring residues , 2008, Nucleic acids research.

[135]  Paulo P. Amaral,et al.  MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. , 2009, Genome research.

[136]  F. Pauler,et al.  Silencing and transcriptional properties of the imprinted Airn ncRNA are independent of the endogenous promoter , 2008, The EMBO journal.

[137]  Hakim Tafer,et al.  RNAplex: a fast tool for RNA-RNA interaction search , 2008, Bioinform..

[138]  Sebastian Will,et al.  RNAalifold: improved consensus structure prediction for RNA alignments , 2008, BMC Bioinformatics.

[139]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[140]  J. Gorodkin,et al.  Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments , 2008, Nucleic acids research.

[141]  Vincent Moulton,et al.  Fisher: a program for the detection of H/ACA snoRNAs using MFE secondary structure prediction and comparative genomics – assessment and update , 2008, BMC Research Notes.

[142]  H. Nakaya,et al.  Conserved tissue expression signatures of intronic noncoding RNAs transcribed from human and mouse loci. , 2008, Genomics.

[143]  Pontus Larsson,et al.  De novo search for non-coding RNA genes in the AT-rich genome of Dictyostelium discoideum: performance of Markov-dependent genome feature scoring. , 2008, Genome research.

[144]  Tanja Gesell,et al.  Dinucleotide controlled null models for comparative RNA gene prediction , 2008, BMC Bioinformatics.

[145]  Minghui Jiang,et al.  uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts , 2008, BMC Bioinformatics.

[146]  W. L. Ruzzo,et al.  Comparative genomics beyond sequence-based alignments: RNA structures in the ENCODE regions. , 2008, Genome research.

[147]  Axel Mosig,et al.  Structure and Function of the Smallest Vertebrate Telomerase RNA from Teleost Fish* , 2008, Journal of Biological Chemistry.

[148]  Sonja J. Prohaska,et al.  Evolutionary patterns of non-coding RNAs , 2005, Theory in Biosciences.

[149]  N. Stoletzki,et al.  Conflicting selection pressures on synonymous codon use in yeast suggest selection on mRNA secondary structures , 2008, BMC Evolutionary Biology.

[150]  Stephan H. Bernhart,et al.  Strategies for measuring evolutionary conservation of RNA secondary structures , 2008, BMC Bioinformatics.

[151]  Sonja J. Prohaska,et al.  Computational RNomics of Drosophilids , 2007, BMC Genomics.

[152]  Walter L. Ruzzo,et al.  How accurately is ncRNA aligned within whole-genome multiple alignments? , 2007, BMC Bioinformatics.

[153]  Jan Gorodkin,et al.  Fast Pairwise Structural RNA Alignments by Pruning of the Dynamical Programming Matrix , 2007, PLoS Comput. Biol..

[154]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[155]  Robert Giegerich,et al.  Locomotif: from graphical motif description to RNA motif search , 2007, ISMB/ECCB.

[156]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[157]  T. Gingeras,et al.  Genome-wide transcription and the implications for genomic organization , 2007, Nature Reviews Genetics.

[158]  M. Gerstein,et al.  Structured Rnas in the Encode Selected Regions of the Human Genome , 2022 .

[159]  C. Ponting,et al.  Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. , 2007, Genome research.

[160]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[161]  Sonja J. Prohaska,et al.  RNAs everywhere: genome-wide annotation of structured RNAs. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[162]  E. Leygue,et al.  Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer , 2007, Nuclear receptor signaling.

[163]  Jonathan P. Bollback,et al.  Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. , 2006, Genome research.

[164]  Sergio Verjovski-Almeida,et al.  Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription , 2007, Genome Biology.

[165]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[166]  Timothy R. Hughes,et al.  Considerations in the identification of functional RNA structural elements in genomic alignments , 2007, BMC Bioinformatics.

[167]  Paulo P. Amaral,et al.  Androgen responsive intronic non-coding RNAs , 2007, BMC Biology.

[168]  Paul P. Gardner,et al.  Sequence analysis Measuring covariation in RNA alignments : physical realism improves information measures , 2006 .

[169]  D. Barlow,et al.  The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export , 2006, The EMBO journal.

[170]  Miklós Erdélyi,et al.  A translation-independent role of oskar RNA in early Drosophila oogenesis , 2006, Development.

[171]  J. Gorodkin,et al.  Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. , 2006, Genome research.

[172]  G. Storz,et al.  Target prediction for small, noncoding RNAs in bacteria , 2006, Nucleic acids research.

[173]  E. Borenstein,et al.  Direct evolution of genetic robustness in microRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[174]  Peter F. Stadler,et al.  Fragrep: An Efficient Search Tool for Fragmented Patterns in Genomic Sequences , 2006, Genom. Proteom. Bioinform..

[175]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[176]  Robert Giegerich,et al.  GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing , 2006, Bioinform..

[177]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[178]  Zasha Weinberg,et al.  CMfinder - a covariance model based RNA motif finding algorithm , 2006, Bioinform..

[179]  C. Futter,et al.  EGF stimulates annexin 1‐dependent inward vesiculation in a multivesicular endosome subpopulation , 2006, The EMBO journal.

[180]  J. Mattick,et al.  Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. , 2006, Trends in genetics : TIG.

[181]  Zasha Weinberg,et al.  Sequence-based heuristics for faster annotation of non-coding RNA families , 2006, Bioinform..

[182]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[183]  Christina S Leslie,et al.  Computational searches for splicing signals. , 2005, Methods.

[184]  István Miklós,et al.  Statistical evidence for conserved, local secondary structure in the coding regions of eukaryotic mRNAs and pre-mRNAs , 2005, Nucleic acids research.

[185]  P. Stadler,et al.  Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome , 2005, Nature Biotechnology.

[186]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[187]  J. Livny,et al.  sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes , 2005, Nucleic acids research.

[188]  Peter Schattner,et al.  The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..

[189]  Kaizhong Zhang,et al.  RNA-RNA Interaction Prediction and Antisense RNA Target Search , 2005, RECOMB.

[190]  A. Hüttenhofer,et al.  Non-coding RNAs: hope or hype? , 2005, Trends in genetics : TIG.

[191]  P. Clote,et al.  Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. , 2005, RNA.

[192]  A. Wilm,et al.  A benchmark of multiple sequence alignment programs upon structural RNAs , 2005, Nucleic acids research.

[193]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[194]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[195]  I. Hofacker,et al.  Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. , 2004, Journal of molecular biology.

[196]  Sergio Verjovski-Almeida,et al.  Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer , 2004, Oncogene.

[197]  B. Berger,et al.  MSARI: multiple sequence alignments for statistical detection of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[198]  M. Zuker,et al.  Prediction of hybridization and melting for double-stranded nucleic acids. , 2004, Biophysical journal.

[199]  Thilo Dörk,et al.  Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: Maximum entropy estimates of splice junction strengths , 2004, Human mutation.

[200]  D. Pervouchine IRIS: intermolecular RNA interaction search. , 2004, Genome informatics. International Conference on Genome Informatics.

[201]  Irmtraud M. Meyer,et al.  A comparative method for finding and folding RNA secondary structures within protein-coding regions. , 2004, Nucleic acids research.

[202]  Zasha Weinberg,et al.  Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy , 2004, ISMB/ECCB.

[203]  Diego di Bernardo,et al.  ddbRNA: detection of conserved secondary structures in multiple alignments , 2003, Bioinform..

[204]  Christophe Pichon,et al.  Intergenic sequence inspector: searching and identifying bacterial RNAs , 2003, Bioinform..

[205]  Bjarne Knudsen,et al.  Pfold: RNA Secondary Structure Prediction Using Stochastic Context-Free Grammars , 2003 .

[206]  J. Rinn,et al.  The transcriptional activity of human Chromosome 22. , 2003, Genes & development.

[207]  Manuel Echeverria,et al.  Plant snoRNAs: functional evolution and new modes of gene expression. , 2003, Trends in plant science.

[208]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[209]  S. Eddy,et al.  Noncoding RNA genes identified in AT-rich hyperthermophiles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[210]  D. Turner,et al.  Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. , 2002, Journal of molecular biology.

[211]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[212]  D. Gautheret,et al.  Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. , 2001, Journal of molecular biology.

[213]  Elena Rivas,et al.  Noncoding RNA gene detection using comparative sequence analysis , 2001, BMC Bioinformatics.

[214]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[215]  G. Stormo,et al.  Discovering common stem-loop motifs in unaligned RNA sequences. , 2001, Nucleic acids research.

[216]  C. Lawrence,et al.  Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. , 2001, Nucleic acids research.

[217]  W. Fontana,et al.  Plasticity, evolvability, and modularity in RNA. , 2000, The Journal of experimental zoology.

[218]  J. Parsch,et al.  Comparative sequence analysis and patterns of covariation in RNA secondary structures. , 2000, Genetics.

[219]  F. Osman,et al.  A cis-acting element in the 3'-untranslated region of human TNF-alpha mRNA renders splicing dependent on the activation of protein kinase PKR. , 1999, Genes & development.

[220]  A. Krogh,et al.  No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. , 1999, Nucleic acids research.

[221]  P. Stadler,et al.  Viral RNA and evolved mutational robustness. , 1999, The Journal of experimental zoology.

[222]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[223]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[224]  R. Overbeek,et al.  Searching for patterns in genomic data. , 1997, Trends in genetics : TIG.

[225]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[226]  Peter Winkler,et al.  Shuffling Biological Sequences , 1996, Discret. Appl. Math..

[227]  A. Viari,et al.  Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database. , 1996, Nucleic acids research.

[228]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[229]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[230]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[231]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[232]  Weinberger,et al.  RNA folding and combinatory landscapes. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[233]  Daniel Gautheret,et al.  Pattern searching/alignment with RNA primary and secondary structures: an effective descriptor for tRNA , 1990, Comput. Appl. Biosci..

[234]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[235]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[236]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[237]  S. Altschul,et al.  Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. , 1985, Molecular biology and evolution.

[238]  D. Sankoff Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems , 1985 .

[239]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[240]  Jerrold R. Griggs,et al.  Algorithms for Loop Matchings , 1978 .