Micromechanical Estimates for Elastic Limit States in Wood Materials, Revealing Nanostructural Failure Mechanisms

At the macroscale, wood materials show great variability and diversity. At the nanoscale, however, they exhibit common (universal) building blocks which build up universal organizational patterns over several length scales up to the macroscale. In the framework of continuum micromechanics, this building principle was recently expressed in quantitative terms, allowing for a prognosis of tissue-specific anisotropic elasticity properties of wood from tissue-specific chemical composition and porosity, and from universal elastic properties of the elementary constituents “amorphous cellulose,” “crystalline cellulose,” “hemicellulose,” “lignin,” and “water.” In this paper, we extend this investigation to tissue-specific macroscopic elastic limit states: We show that shear failure of the nanoscale building block “lignin,” which exhibits an isotropic, tissue-independent (“universal”) shear strength, is the dominant determinant of anisotropic macroscopic failure of wood under different loading conditions. In a continuum micromechanics setting, quadratic strain averages over material phases represent microstructural strain peaks, which are responsible for material phase failure. The good agreement of tissue-specific micromechanical predictions of macroscopic limit stresses with corresponding tissue-specific strength experiments underlines the role of lignin as the governing strength-determining component of wood.

[1]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  F. Kollmann,et al.  Technologie des Holzes und der Holzwerkstoffe , 1955 .

[4]  F. Bröker Technologische Untersuchungen an Pinus radiata-Importhölzern aus Chile , 1980, Holz als Roh- und Werkstoff.

[5]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  Einfluß der Reibung zwischen Prüfkörper und Druckplatten auf die Druckfestigkeit parallel zur Faser , 1978, Holz als Roh- und Werkstoff.

[7]  David E. Kretschmann,et al.  Modeling Moisture Content-Mechanical Property Relationships For Clear Southern Pine , 2007 .

[8]  Y. Yokoyama,et al.  Strain-controlling mechanical behavior in noncrystalline materials: I: Onset of plastic deformation , 2007 .

[9]  G. Sengupta,et al.  Characterization of a lignified secondary phloem fibre-deficient mutant of jute (Corchorus capsularis). , 2004, Annals of botany.

[10]  Alain Molinari,et al.  Micromechanical approach to the behavior of poroelastic materials , 2002 .

[11]  Christian Hellmich,et al.  'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. , 2007, Journal of theoretical biology.

[12]  Christian Hellmich,et al.  Mineral–collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach , 2004 .

[13]  Alain Molinari,et al.  Residual stresses in polycrystals as influenced by grain shape and texture , 1993 .

[14]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[15]  M. Rink,et al.  Yield criteria for amorphous glassy polymers , 1997 .

[16]  Seung-Won Oh The Mechanical Properties of New Zealand-grown Radiata Pine , 1996 .

[17]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[18]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[19]  N. Laws,et al.  The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material , 1977 .

[20]  Christian Hellmich,et al.  Development and experimental validation of a continuum micromechanics model for the elasticity of wood , 2005 .

[21]  C. Hellmich,et al.  The influence of the microfibril angle on wood stiffness: a continuum micromechanics approach , 2006 .

[22]  W. Kreher,et al.  Residual stresses and stored elastic energy of composites and polycrystals , 1990 .