Poisson deformations of symplectic quotient singularities

Abstract We establish a connection between smooth symplectic resolutions and symplectic deformations of a (possibly singular) affine Poisson variety. In particular, let V be a finite-dimensional complex symplectic vector space and G⊂Sp(V) a finite subgroup. Our main result says that the so-called Calogero–Moser deformation of the orbifold V/G is, in an appropriate sense, a versal Poisson deformation. That enables us to determine the algebra structure on the cohomology H • (X, C ) of any smooth symplectic resolution X↠V/G (multiplicative McKay correspondence). We prove further that if G⊂GL( h ) is an irreducible Weyl group and V= h ⊕ h ∗ , then no smooth symplectic resolution of V/G exists unless G is of types A , B , C .

[1]  Zhenbo Qin,et al.  Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces , 2000 .

[2]  M. Kontsevich Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.

[3]  M. Lehn,et al.  Symmetric groups and the cup product on the cohomology of Hilbert schemes , 2000, math/0009131.

[4]  Period Map for Non-Compact Holomorphically Symplectic Manifolds , 2000, math/0005007.

[5]  Peter Slodowy,et al.  Simple Singularities and Simple Algebraic Groups , 1980 .

[6]  Geoffrey Mason,et al.  The Santa Cruz Conference on Finite Groups , 1981 .

[7]  Kei-ichi Watanabe Certain invariant subrings are Gorenstein. II , 1974 .

[8]  A New Cohomology Theory of Orbifold , 2000, math/0004129.

[9]  A. Kuznetsov Quiver varieties and Hilbert schemes , 2001, math/0111092.

[10]  Kenneth A. Brown,et al.  Poisson orders, symplectic reflection algebras and representation theory , 2002 .

[11]  Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group , 2001, math/0109068.

[12]  V. Baranovsky Orbifold Cohomology as Periodic Cyclic Homology , 2002, math/0206256.

[14]  Victor Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .

[15]  B. Fresse Homologie de Quillen pour les algèbres de Poisson , 1998 .

[16]  J. Koszul Crochet de Schouten-Nijenhuis et cohomologie , 1985 .

[17]  William Crawley-Boevey,et al.  NONCOMMUTATIVE DEFORMATIONS OF KLEINIAN SINGULARITIES , 1998 .

[18]  Jean-Luc Brylinski,et al.  A differential complex for Poisson manifolds , 1988 .

[19]  D. Kaledin McKay correspondence for symplectic quotient singularities , 1999, math/9907087.

[20]  Symplectic resolutions: deformations and birational maps , 2000, math/0012008.

[21]  Deformations of algebras over operads and Deligne's conjecture , 2000, math/0001151.

[22]  Misha Verbitsky,et al.  Holomorphic symplectic geometry and orbifold singularities , 1999, math/9903175.

[23]  P. Etingof,et al.  Quantization, orbifold cohomology, and Cherednik algebras , 2003, math/0311005.

[24]  Miles Reid,et al.  Mukai implies McKay: the McKay correspondence as an equivalence of derived categories , 1999, math/9908027.

[25]  Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry , 1994, alg-geom/9410001.

[26]  D. S. Rim Formal deformation theory , 1972 .

[27]  Contact singularities , 2001, math/0109064.

[28]  Symplectic resolutions for nilpotent orbits , 2002, math/0205048.

[29]  I. Gordon,et al.  Baby Verma Modules for Rational Cherednik Algebras , 2002, math/0202301.

[30]  D. Kaledin Dynkin diagrams and crepant resolutions of quotient singularities , 1999, math/9903157.

[31]  Stringy Geometry and Topology of Orbifolds , 2000, math/0011149.

[32]  Jacques Alev,et al.  Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini☆☆☆ , 2000 .

[33]  E. Vasserot Sur l'anneau de cohomologie du schéma de Hilbert de ? , 2000, math/0009127.

[34]  Certain invariant subrings are Gorenstein. II , 1974 .

[35]  H. Flenner Extendability of differential forms on non-isolated singularities , 1988 .

[36]  J. Denef,et al.  Germs of arcs on singular algebraic varieties and motivic integration , 1999 .

[37]  Y. Ruan Stringy orbifolds , 2002, math/0201123.