Determination of groups of prime-power order

Of course the general problem can be solved in principle. For instance one could write down all Latin squares of a given order, check which can be regarded as tables for associative multiplications and then test for isomorphisms. What one wants are practical methods. I won't here go into all the methods that have been proposed or used. Let me just sketch, very briefly, results obtained for the case of prime-power orders. Cayley himself had already settled the case of prime order in 1854. Metro (1882) settled squares of primes; Young (1893) and H~ider (1893), independentl~settled cubes and fourth powers. Bagnera (1898) essentially settled

[1]  E. Netto Substitutionentheorie und ihre Anwendungen auf die Algebra , 1882 .

[2]  J. Neubüser,et al.  Investigations of groups on computers , 1970 .

[3]  B. H. Neumann,et al.  On a question of Gaschütz , 1956 .

[4]  W. Gaschütz Zu einem von B. H. und H. Neumann gestellten Problem , 1955 .

[5]  John J. Cannon,et al.  Computation of Isomorphism Classes of /»-Groups , 2010 .

[6]  G. Bagnera,et al.  La composizione dei Gruppi finiti il cui grado è la quinta potenza di un numero primo , 1898 .

[7]  O. Schreier,et al.  Über die Erweiterung von Gruppen I , 1926 .

[8]  G. A. Miller Report on recent progress in the theory of the groups of a finite order , 1899 .

[9]  Cayley Desiderata and Suggestions: No. 1. The Theory of Groups , 1878 .

[10]  G. Higman,et al.  Enumerating p‐Groups. I: Inequalities , 1960 .

[11]  O. Schreier,et al.  Über die Erweiterung von Gruppen. II , 1925 .

[12]  I. D. Macdonald A computer application to finite p-groups , 1974, Journal of the Australian Mathematical Society.

[13]  J. W. Wamsley Computation in Nilpotent Groups (Theory) , 1974 .

[14]  E. Elliott,et al.  Éléments de la théorie des groupes abstraits , 1905 .

[15]  Marshall Hall,et al.  The Groups of Order 2 n (n ≦6) , 1965 .

[16]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[17]  H. A. Bender A Determination of the Groups of Order p 5 , 1927 .

[18]  P. Hall,et al.  The classification of prime-power groups. , 1940 .

[19]  Arthur Cayley The Collected Mathematical Papers: On the Theory of Groups as depending on the Symbolical Equation θn = 1 , 1854 .

[20]  D. H. McLain Finiteness Conditions in Locally Soluble Groups , 1959 .

[21]  Charles C. Sims,et al.  Enumerating p‐Groups , 1965 .

[22]  O. Hölder,et al.  Die Gruppen der Ordnungenp3,pq2,pqr,p4 , 1893 .

[23]  M. Hall The Theory Of Groups , 1959 .

[24]  G. Bagnera Sopra i Gruppi astratti di grado 32 , 1899 .

[25]  J. W. A. Young On the Determination of Groups Whose Order is a Power of a Prime , 1893 .