Biogeography-based optimization in noisy environments

Biogeography-based optimization (BBO) is a new evolutionary optimization algorithm that is based on the science of biogeography. In this paper, BBO is applied to the optimization of problems in which the fitness function is corrupted by random noise. Noise interferes with the BBO immigration rate and emigration rate, and adversely affects optimization performance. We analyse the effect of noise on BBO using a Markov model. We also incorporate re-sampling in BBO, which samples the fitness of each candidate solution several times and calculates the average to alleviate the effects of noise. BBO performance on noisy benchmark functions is compared with particle swarm optimization (PSO), differential evolution (DE), self-adaptive DE (SaDE) and PSO with constriction (CPSO). The results show that SaDE performs best and BBO performs second best. In addition, BBO with re-sampling is compared with Kalman filter-based BBO (KBBO). The results show that BBO with re-sampling achieves almost the same performance as KBBO but consumes less computational time.

[1]  D. Wiesmann,et al.  Evolutionary Optimization Algorithms in Computational Optics , 1999 .

[2]  R. Lyndon While,et al.  Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[3]  Xin Yao,et al.  Analysis of Computational Time of Simple Estimation of Distribution Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[4]  P. K. Chattopadhyay,et al.  Biogeography-Based Optimization for Different Economic Load Dispatch Problems , 2010, IEEE Transactions on Power Systems.

[5]  Dan Simon,et al.  Markov Models for Biogeography-Based Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[7]  Shankar P. Bhattacharyya,et al.  Robust, fragile or optimal? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[8]  Ling Wang,et al.  Particle swarm optimization for function optimization in noisy environment , 2006, Appl. Math. Comput..

[9]  N. Salvatore,et al.  Surrogate assisted local search in PMSM drive design , 2008 .

[10]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[11]  Parminder Singh,et al.  Biogeography based Satellite Image Classification , 2009, ArXiv.

[12]  Harish Kundra,et al.  An Integrated Approach to Biogeography Based Optimization with case based reasoning for retrieving Groundwater Possibility , 2009 .

[13]  Dan Simon,et al.  Oppositional biogeography-based optimization , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[14]  Haiping Ma,et al.  An analysis of the equilibrium of migration models for biogeography-based optimization , 2010, Inf. Sci..

[15]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[16]  Siang Yew Chong,et al.  Centroid-based memetic algorithm – adaptive Lamarckian and Baldwinian learning , 2012, Int. J. Syst. Sci..

[17]  Amit Konar,et al.  Improved differential evolution algorithms for handling noisy optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[18]  R. Storn,et al.  Differential Evolution , 2004 .

[19]  Diego Restrepo,et al.  Evolving Solutions: The Genetic Algorithm and Evolution Strategies for Finding Optimal Parameters , 2008, Applications of Computational Intelligence in Biology.

[20]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[21]  Godfrey C. Onwubolu,et al.  New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.

[22]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[23]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[24]  Ferrante Neri,et al.  A memetic Differential Evolution approach in noisy optimization , 2010, Memetic Comput..

[25]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[26]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[27]  Phillip D. Stroud,et al.  Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations , 2001, IEEE Trans. Evol. Comput..

[28]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[29]  Axel Kleidon Amazonian Biogeography as a Test for Gaia , 2004 .

[30]  Dawei Du Biogeography-Based Optimization: Synergies with Evolutionary Strategies, Immigration Refusal, and Kalman Filters , 2009 .

[31]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[32]  Dan Simon,et al.  Biogeography-based optimization and the solution of the power flow problem , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[33]  R. Macarthur Fluctuations of Animal Populations and a Measure of Community Stability , 1955 .

[34]  Dan Simon,et al.  Biogeography-based optimization combined with evolutionary strategy and immigration refusal , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[35]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[36]  Peter Tiño,et al.  Scaling Up Estimation of Distribution Algorithms for Continuous Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[37]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[38]  Xin Yao,et al.  Choosing selection pressure for wide-gap problems , 2010, Theor. Comput. Sci..

[39]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[40]  R. Macarthur,et al.  AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY , 1963 .

[41]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[42]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[43]  Hans-Georg Beyer,et al.  On the Effects of Outliers on Evolutionary Optimization , 2003, IDEAL.

[44]  Ponnuthurai N. Suganthan,et al.  Self-adaptive differential evolution with multi-trajectory search for large-scale optimization , 2011, Soft Comput..

[45]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[46]  Renato A. Krohling,et al.  Swarm algorithms with chaotic jumps applied to noisy optimization problems , 2011, Inf. Sci..

[47]  Charles C. Elton,et al.  The Ecology of Invasions by Animals and Plants. , 1959 .

[48]  T. Lenton Gaia and natural selection , 1998, Nature.

[49]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[50]  A. Kai Qin,et al.  Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[51]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[52]  Gary B. Fogel,et al.  Noisy optimization problems - a particular challenge for differential evolution? , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[53]  Russell C. Eberhart,et al.  Guest Editorial Special Issue on Particle Swarm Optimization , 2004, IEEE Trans. Evol. Comput..

[54]  Xin Yao,et al.  Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization , 2009, Memetic Comput..

[55]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[56]  Bo Liu,et al.  Hybrid differential evolution for noisy optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[57]  J. Lovelock Hands up for the Gaia hypothesis , 1990, Nature.

[58]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[59]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[60]  Tyler Volk,et al.  Gaia's body : toward a physiology of earth , 1998 .

[61]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[62]  Dan Simon,et al.  Blended biogeography-based optimization for constrained optimization , 2011, Eng. Appl. Artif. Intell..

[63]  Mohammad Majid al-Rifaie,et al.  Bare Bones Particle Swarms with Jumps , 2012, ANTS.

[64]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[65]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[66]  Efrén Mezura-Montes,et al.  Parameter control in Differential Evolution for constrained optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.