Form Errors in Precision Metrology: A Survey of Measurement Techniques

This article presents an overview of foundational concepts and techniques used in metrology of form errors such as straightness, flatness, circularity, sphericity, and cylindricity. Though there exists a significant body of literature on form-error metrology, to the best of our knowledge, no review paper has been written on this topic. Our aim here is to (1) present a unified view of the mathematical foundations of form-error metrology and (2) uncover the relative strengths and weaknesses of a wide spectrum of techniques from the literature. Our analysis concludes with a discussion of opportunities for future research.

[1]  D G Chetwynd,et al.  Applications of Linear Programming to Engineering Metrology , 1985 .

[2]  Michael Yu Wang,et al.  Minimum Zone Evaluation of Form Tolerances , 1992 .

[3]  M. Jeya Chandra,et al.  A statistical approach to tolerance evaluation for circles and cylinders , 2004 .

[4]  Shivakumar Raman,et al.  On the selection of flatness measurement points in coordinate measuring machine inspection , 2000 .

[5]  S. Hossein Cheraghi,et al.  Circularity error evaluation: Theory and algorithm , 1999 .

[6]  Saul I. Gass,et al.  Fitting Circles and Spheres to Coordinate Measuring Machine Data , 1998 .

[7]  S. Hossein Cheraghi,et al.  Sphericity error evaluation: theoretical derivation and algorithm development , 2001 .

[8]  U. M. Landau,et al.  Estimation of a circular arc center and its radius , 1987, Comput. Vis. Graph. Image Process..

[9]  M. S. Shunmugam,et al.  An algorithm for form error evaluation: using the theory of discrete and linear Chebyshev approximation , 1991 .

[10]  D. T. Lee,et al.  Out-of-Roundness Problem Revisited , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  T.S.R. Murthy,et al.  A comparison of different algorithms for cylindricity evaluation , 1982 .

[12]  Jose A. Ventura,et al.  Minimax centre estimation for inspection of spherical parts , 1994 .

[13]  I. D. Coope,et al.  Circle fitting by linear and nonlinear least squares , 1993 .

[14]  M. S. Shunmugam,et al.  On assessment of geometric errors , 1986 .

[15]  S. H. Cheraghi,et al.  Straightness and flatness tolerance evaluation: an optimization approach , 1996 .

[16]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[17]  Han Ding,et al.  A steepest descent algorithm for circularity evaluation , 2003, Comput. Aided Des..

[18]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[19]  T. Kanada Evaluation of spherical form errors : computation of sphericity by means of minimum zone method and some examinations with using simulated data , 1995 .

[20]  David J. Whitehouse,et al.  Surfaces and their Measurement , 2002 .

[21]  M. S. Shunmugam,et al.  Comparison of linear and normal deviations of forms of engineering surfaces , 1987 .

[22]  T.S.R. Murthy,et al.  Minimum zone evaluation of surfaces , 1980 .

[23]  Derek G. Chetwynd Roundness measurement using limacons , 1979 .

[24]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[25]  Xiaoping Qian,et al.  Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces , 2007, DAC 2007.

[26]  V. N. Narayanan Namboothiri ON DETERMINATION OF SAMPLE SIZE IN FORM ERROR EVALUATION USING COORDINATE METROLOGY , 1999 .

[27]  Matt Lombard,et al.  Dimensioning and Tolerancing , 2013 .

[28]  Craig M. Shakarji,et al.  Least-Squares Fitting Algorithms of the NIST Algorithm Testing System , 1998, Journal of research of the National Institute of Standards and Technology.

[29]  Sencer Yeralan,et al.  Computerized roundness inspection , 1988 .

[30]  B. Muralikrishnan,et al.  Recent advances in separation of roughness, waviness and form , 2002 .

[31]  S. Obeidat,et al.  Mathematical Foundations for Form Inspection and Adaptive Sampling , 2009 .

[32]  Jyunping Huang,et al.  An exact minimum zone solution for three-dimensional straightness evaluation problems , 1999 .

[33]  K. Kim,et al.  Assessing Roundness Errors Using Discrete Voronoi Diagrams , 2000 .

[34]  M. A. Nasson Mathematical Definition of Dimensioning and Tolerancing Principles , 2001 .

[35]  Jiing-Yih Lai,et al.  Minimum zone evaluation of circles and cylinders , 1996 .

[36]  Fred L. Hulting [Statistical Issues in Geometric Feature Inspection Using Coordinate Measuring Machines]: Discussion , 1997 .

[37]  James D. Meadows Geometric Dimensioning and Tolerancing , 2009 .

[38]  Soichiro Suzuki,et al.  Application of several computing techniques for minimum zone straightness , 1993 .

[39]  D. Hearn,et al.  Geometrical Solutions for Some Minimax Location Problems , 1972 .

[40]  Ralph R. Martin,et al.  Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Soichiro Suzuki,et al.  Evaluation of minimum zone flatness by means of nonlinear optimization techniques and its verification , 1993 .

[42]  Saeid Motavalli,et al.  A unified approach to form error evaluation , 2002 .

[43]  K. Fan,et al.  A new minimum zone method for evaluating straightness errors , 1993 .

[44]  Theodore B. Trafalis,et al.  Support Vector Regression for Determination of Minimum Zone , 2003 .

[45]  Tom M. Cavalier,et al.  Evaluation of straightness and flatness tolerances using the minimum zone , 1989 .

[46]  Placid Mathew Ferreira,et al.  Verification of form tolerances part I: Basic issues, flatness, and straightness , 1995 .

[47]  Hong Qiao,et al.  Analysis of two-dimensional measurement data for automated inspection , 1990 .

[48]  S. Hossein Cheraghi,et al.  Evaluating the geometric characteristics of cylindrical features , 2003 .

[49]  Bidyut Baran Chaudhuri,et al.  Optimum circular fit to weighted data in multi-dimensional space , 1993, Pattern Recognit. Lett..

[50]  Utpal Roy,et al.  Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error , 1992, Comput. Aided Des..

[51]  A. Forbes Least-squares best-fit geometric elements. , 1991 .

[52]  Du-Ming Tsai,et al.  MEASUREMENT OF ROUNDNESS : A NONLINEAR APPROACH , 1999 .

[53]  Utpal Roy,et al.  Form and orientation tolerance analysis for cylindrical surfaces in computer-aided inspection , 1995 .

[54]  Suleiman Obeidat Adaptive methods for form error determination in discrete point metrology , 2008 .

[55]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[56]  Shivakumar Raman,et al.  Intelligent Search-Based Selection of Sample Points for Straightness and Flatness Estimation , 2003 .

[57]  A Finite-Differences Derivative-Descent Approach for Estimating Form Error in Precision-Manufactured Parts , 2006 .

[58]  Leo Miller,et al.  Engineering Dimensional Metrology , 1962 .

[59]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[60]  M. A. Wolfe A first course in numerical analysis , 1972 .

[61]  Ryuzo Takiyama,et al.  A least square error estimation of the center and radii of concentric arcs , 1989, Pattern Recognit. Lett..

[62]  Sam Anand,et al.  ASSESSMENT OF CIRCULARITY ERROR USING A SELECTIVE DATA PARTITION APPROACH , 1999 .

[63]  Abdelaziz Berrado,et al.  An Empirical Investigation into the Distribution of Flatness Measurements , 2006 .

[64]  Sam Anand,et al.  Evaluation of minimum zone for flatness by normal plane method and simplex search , 1999 .

[65]  Bernard Roth,et al.  On Chebychev fits for pairs of lines and polygons with specified internal angles , 1997 .

[66]  Thomas R. Kurfess,et al.  Statistical verification of conformance to geometric tolerance , 1995, Comput. Aided Des..

[67]  M. S. Shunmugam,et al.  New approach for evaluating form errors of engineering surfaces , 1987 .

[68]  T.S.R. Murthy,et al.  A comparison of different algorithms for circularity evaluation , 1986 .

[69]  Sencer Yeralan,et al.  The minimax center estimation problem for automated roundness inspection , 1989 .

[70]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[71]  Wen-Yuh Jywe,et al.  Precision modeling of form errors for cylindricity evaluation using genetic algorithms , 2000 .