Model predictive power control approach for three-phase single-stage grid-tied PV module-integrated converter

This paper presents the concept of the three-phase module-integrated converters (MICs) incorporated in grid-tied large-scale photovoltaic (PV) systems. The current-source converter (CSC) with dc voltage boost capability, namely single-stage power conversion system, is proposed for three-phase PV MIC system. A model predictive scheme with low switching frequency is designed to control the proposed topology in such a way that provides a certain amount of active and reactive power in steady-state operation and also provides a proper ratio of reactive power under transient conditions to meet the low voltage ride through (LVRT) regulations. To predict the future behavior of current control values and switching states, a discrete-time model of the MIC is developed in synchronous reference frame. It is demonstrated that the injected active and reactive power can be controlled using minimizing the cost function introduced in the predictive switching algorithm. The proposed structure is simulated in MATLAB/SIMULINK software. The results verify the desired performance of the proposed control scheme for exchanging of both active and reactive powers between the PV MIC and the grid within different operating conditions.

[1]  Bin Wu,et al.  Model Predictive Current Control of Two-Level Four-Leg Inverters—Part I: Concept, Algorithm, and Simulation Analysis , 2013, IEEE Transactions on Power Electronics.

[2]  Hui Li,et al.  A High-Performance Photovoltaic Module-Integrated Converter (MIC) Based on Cascaded Quasi-Z-Source Inverters (qZSI) Using eGaN FETs , 2013, IEEE Transactions on Power Electronics.

[3]  M. Rivera,et al.  Enhanced model predictive voltage control of four-leg inverters with switching frequency reduction for standalone power systems , 2012, 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC).

[4]  Frede Blaabjerg,et al.  Overview of Control and Grid Synchronization for Distributed Power Generation Systems , 2006, IEEE Transactions on Industrial Electronics.

[5]  Bin Wu,et al.  Model Predictive Decoupled Active and Reactive Power Control for High-Power Grid-Connected Four-Level Diode-Clamped Inverters , 2014, IEEE Transactions on Industrial Electronics.

[6]  Koji Orikawa,et al.  A single-phase current source PV inverter with power decoupling capability using an active buffer , 2013, 2013 IEEE Energy Conversion Congress and Exposition.

[7]  Bin Wu,et al.  A New Power Conversion System for Megawatt PMSG Wind Turbines Using Four-Level Converters and a Simple Control Scheme Based on Two-Step Model Predictive Strategy—Part II: Simulation and Experimental Analysis , 2014, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[8]  Bin Wu,et al.  Predictive Control for Low-Voltage Ride-Through Enhancement of Three-Level-Boost and NPC-Converter-Based PMSG Wind Turbine , 2014, IEEE Transactions on Industrial Electronics.

[9]  F.Z. Peng,et al.  Z-source inverter , 2002, Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344).

[10]  Peter Zacharias,et al.  A Single-Stage PV Module Integrated Converter Based on a Low-Power Current-Source Inverter , 2008, IEEE Transactions on Industrial Electronics.

[11]  G. F. Alapatt,et al.  Making Solar Cells a Reality in Every Home: Opportunities and Challenges for Photovoltaic Device Design , 2013, IEEE Journal of the Electron Devices Society.

[12]  Bin Wu,et al.  Model Predictive Current Control of Two-Level Four-Leg Inverters—Part II: Experimental Implementation and Validation , 2013, IEEE Transactions on Power Electronics.

[13]  M. Liserre,et al.  Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame , 2006, IEEE Transactions on Power Electronics.

[14]  Yang Chen,et al.  Three-Phase Boost-Type Grid-Connected Inverter , 2008, IEEE Transactions on Power Electronics.

[15]  Josep M. Guerrero,et al.  A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators , 2016 .

[16]  J. Espinoza,et al.  Predictive current control in a current source inverter operating with low switching frequency , 2013, 4th International Conference on Power Engineering, Energy and Electrical Drives.

[17]  Pericle Zanchetta,et al.  Model Predictive Control for Shunt Active Filters With Fixed Switching Frequency , 2017, IEEE Transactions on Industry Applications.

[18]  Quan Li,et al.  A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations , 2008, IEEE Transactions on Power Electronics.

[19]  F. Blaabjerg,et al.  A review of single-phase grid-connected inverters for photovoltaic modules , 2005, IEEE Transactions on Industry Applications.

[20]  Josep Bordonau,et al.  Model Predictive Current Control of Grid-Connected Neutral-Point-Clamped Converters to Meet Low-Voltage Ride-Through Requirements , 2015, IEEE Transactions on Industrial Electronics.

[21]  Olivier Trescases,et al.  Flyback Mode for Improved Low-Power Efficiency in the Dual-Active-Bridge Converter for Bidirectional PV Microinverters With Integrated Storage , 2015, IEEE Transactions on Industry Applications.

[22]  Josep M. Guerrero,et al.  Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators , 2009, IEEE Transactions on Industrial Electronics.

[23]  Lin Chen,et al.  Design and Implementation of Three-Phase Two-Stage Grid-Connected Module Integrated Converter , 2014, IEEE Transactions on Power Electronics.