A Class of Self-Interacting Processes with Applications to Games and Reinforced Random Walks
暂无分享,去创建一个
[1] M. Benaïm. Vertex-reinforced random walks and a conjecture of Pemantle , 1997 .
[2] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[3] R. Pemantle. Vertex-reinforced random walk , 1992, math/0404041.
[4] L. Shapley,et al. Fictitious Play Property for Games with Identical Interests , 1996 .
[5] M. Benaïm. Dynamics of stochastic approximation algorithms , 1999 .
[6] D. Stroock,et al. Simulated annealing via Sobolev inequalities , 1988 .
[7] S. Volkov. Vertex-reinforced random walk on arbitrary graphs , 1999, math/9907196.
[8] M. Benaim,et al. VERTEX-REINFORCED RANDOM WALKS AND A CONJECTURE OF PEMANTLE , 2002 .
[9] A survey of random processes with reinforcement , 2007, math/0610076.
[10] M. Benaïm,et al. Self-interacting diffusions. III. Symmetric interactions , 2005 .
[11] Bruce E. Hajek,et al. Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..
[12] Stanislav Volkov,et al. Vertex-reinforced random walk on Z has finite range , 1999 .
[13] David M. Kreps,et al. Learning Mixed Equilibria , 1993 .
[14] M. Hirsch,et al. Asymptotic pseudotrajectories and chain recurrent flows, with applications , 1996 .
[15] William H. Sandholm,et al. ON THE GLOBAL CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY , 2002 .
[16] Michel Ledoux,et al. Self-interacting diffusions , 2002 .
[17] Josef Hofbauer,et al. Stochastic Approximations and Differential Inclusions, Part II: Applications , 2006, Math. Oper. Res..
[18] D. Fudenberg,et al. The Theory of Learning in Games , 1998 .
[19] Michel Benaïm,et al. SELF-INTERACTING DIFFUSIONS II: CONVERGENCE IN LAW , 2003 .
[20] Olivier Raimond. Self-interacting diffusions: a simulated annealing version , 2009 .
[21] Tamer Basar,et al. Analysis of Recursive Stochastic Algorithms , 2001 .
[22] M. Hirsch,et al. Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games , 1999 .
[23] Laurent Miclo. Recuit simulé sans potentiel sur un ensemble fini , 1992 .
[24] Josef Hofbauer,et al. Stochastic Approximations and Differential Inclusions , 2005, SIAM J. Control. Optim..
[25] M. Métivier,et al. Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant , 1987 .