Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules

[1]  Ronald E. Bontrop,et al.  Immunogenetics , 2005, Genes and Immunity.

[2]  Zhiping Weng,et al.  Cutting Edge: Evidence for a Dynamically Driven T Cell Signaling Mechanism , 2012, The Journal of Immunology.

[3]  H. Fabian,et al.  Comparative biophysical characterization of chicken β2-microglobulin. , 2012, Biophysical chemistry.

[4]  Rainer A Böckmann,et al.  Dynamical characterization of two differentially disease associated MHC class I proteins in complex with viral and self-peptides. , 2012, Journal of molecular biology.

[5]  S. Morin A practical guide to protein dynamics from 15N spin relaxation in solution. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[6]  G. Gao,et al.  Plasticity of human CD8αα binding to peptide-HLA-A*2402. , 2011, Molecular immunology.

[7]  Heinz Fabian,et al.  Influence of inflammation‐related changes on conformational characteristics of HLA‐B27 subtypes as detected by IR spectroscopy , 2011, The FEBS journal.

[8]  F. Gao,et al.  Two Distinct Conformations of a Rinderpest Virus Epitope Presented by Bovine Major Histocompatibility Complex Class I N*01801: a Host Strategy To Present Featured Peptides , 2011, Journal of Virology.

[9]  J. McCluskey,et al.  The structural bases of direct T‐cell allorecognition: implications for T‐cell‐mediated transplant rejection , 2011, Immunology and cell biology.

[10]  B. Evavold,et al.  Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. , 2011, Immunity.

[11]  S. Radford,et al.  Conformational Conversion during Amyloid Formation at Atomic Resolution , 2011, Molecular cell.

[12]  Marcia M. Miller,et al.  Structure of a Classical MHC Class I Molecule That Binds “Non-Classical” Ligands , 2010, PLoS biology.

[13]  G. Gao,et al.  Crystal structure of a bony fish beta2-microglobulin: insights into the evolutionary origin of immunoglobulin superfamily constant molecules. , 2010, The Journal of biological chemistry.

[14]  Heinz Fabian,et al.  HLA-B27 heavy chains distinguished by a micropolymorphism exhibit differential flexibility. , 2010, Arthritis and rheumatism.

[15]  D. Zajonc,et al.  Structural Basis for Lipid-Antigen Recognition in Avian Immunity , 2010, The Journal of Immunology.

[16]  D. Margulies,et al.  Structural Basis of the CD8αβ/MHC Class I Interaction: Focused Recognition Orients CD8β to a T Cell Proximal Position12 , 2009, The Journal of Immunology.

[17]  G. Gao,et al.  Structural immunology and crystallography help immunologists see the immune system in action: How T and NK cells touch their ligands , 2009, IUBMB life.

[18]  T. Singh,et al.  Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. , 2008, Journal of molecular biology.

[19]  I. Wilson,et al.  The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1 , 2008, Proceedings of the National Academy of Sciences.

[20]  Brian M. Baker,et al.  Conformational changes and flexibility in T-cell receptor recognition of peptide–MHC complexes , 2008, The Biochemical journal.

[21]  E. Malchiodi,et al.  Molecular Architecture of the Major Histocompatibility Complex Class I-binding Site of Ly49 Natural Killer Cell Receptors* , 2008, Journal of Biological Chemistry.

[22]  M. Bolognesi,et al.  The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. , 2008, Journal of molecular biology.

[23]  Heinz Fabian,et al.  HLA-B27 subtypes differentially associated with disease exhibit conformational differences in solution. , 2008, Journal of molecular biology.

[24]  J. Kaufman,et al.  Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. , 2007, Immunity.

[25]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[26]  K. Iwata,et al.  High-resolution crystal structure of beta2-microglobulin formed at pH 7.0. , 2007, Journal of biochemistry.

[27]  Yu Wai Chen,et al.  First Glimpse of the Peptide Presentation by Rhesus Macaque MHC Class I: Crystal Structures of Mamu-A*01 Complexed with Two Immunogenic SIV Epitopes and Insights into CTL Escape1 , 2007, The Journal of Immunology.

[28]  Kouhei Tsumoto,et al.  Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d) , 2006, Proceedings of the National Academy of Sciences.

[29]  Robyn L Stanfield,et al.  How TCRs bind MHCs, peptides, and coreceptors. , 2006, Annual review of immunology.

[30]  G. Schneider,et al.  Structural basis of the differential stability and receptor specificity of H-2Db in complex with murine versus human beta2-microglobulin. , 2006, Journal of molecular biology.

[31]  F. Fogolari,et al.  Solution structure of β2-microglobulin and insights into fibrillogenesis , 2005 .

[32]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[33]  J. McCluskey,et al.  Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Radford,et al.  Dynamics in the unfolded state of beta2-microglobulin studied by NMR. , 2005, Journal of molecular biology.

[35]  A. Palmer,et al.  NMR characterization of the dynamics of biomacromolecules. , 2004, Chemical reviews.

[36]  L. Kay,et al.  Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. , 2004, Annual review of biochemistry.

[37]  Rosa Sorrentino,et al.  Dual, HLA-B27 Subtype-dependent Conformation of a Self-peptide , 2004, The Journal of experimental medicine.

[38]  D. Margulies,et al.  Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb , 2003, Nature Immunology.

[39]  P. Bjorkman,et al.  Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor , 2003, Nature Immunology.

[40]  I. Wilson,et al.  Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å , 2003, Nature Immunology.

[41]  E. Reinherz,et al.  The Crystal Structure of a TL/CD8αα Complex at 2.1 Å Resolution: Implications for Modulation of T Cell Activation and Memory , 2003 .

[42]  Wolfram Saenger,et al.  HLA-B27 Subtypes Differentially Associated with Disease Exhibit Subtle Structural Alterations* , 2002, The Journal of Biological Chemistry.

[43]  R. Strong,et al.  Structural Studies of Allelic Diversity of the MHC Class I Homolog MIC-B, a Stress-Inducible Ligand for the Activating Immunoreceptor NKG2D1 , 2002, The Journal of Immunology.

[44]  S. Radford,et al.  Crystal structure of monomeric human β-2-microglobulin reveals clues to its amyloidogenic properties , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Radford,et al.  Structural properties of an amyloid precursor of β2-microglobulin , 2002, Nature Structural Biology.

[46]  A. Corazza,et al.  The solution structure of human β2‐microglobulin reveals the prodromes of its amyloid transition , 2002, Protein science : a publication of the Protein Society.

[47]  P. Sun,et al.  Structure of killer cell immunoglobulin‐like receptors and their recognition of the class I MHC molecules , 2001, Immunological reviews.

[48]  D. Margulies,et al.  Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand , 1999, Nature.

[49]  E Y Jones,et al.  MHC superfamily structure and the immune system. , 1999, Current opinion in structural biology.

[50]  R. Strong,et al.  Crystal structure of the MHC class I homolog MIC-A, a gammadelta T cell ligand. , 1999, Immunity.

[51]  Don C. Wiley,et al.  Structure of Human Histocompatibility Leukocyte Antigen (Hla)-Cw4, a Ligand for the Kir2d Natural Killer Cell Inhibitory Receptor , 1999, The Journal of experimental medicine.

[52]  R. Strong,et al.  Crystal Structure of the MHC Class I Homolog MIC-A, a γδ T Cell Ligand , 1999 .

[53]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[54]  P. Bjorkman,et al.  Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. , 1999, Science.

[55]  Ryuji Kubota,et al.  The Effect of Human β2-Microglobulin on Major Histocompatibility Complex I Peptide Loading and the Engineering of a High Affinity Variant , 1998, The Journal of Biological Chemistry.

[56]  A. Smolyar,et al.  Structural Basis of CD8 Coreceptor Function Revealed by Crystallographic Analysis of a Murine CD8αα Ectodomain Fragment in Complex with H-2Kb , 1998 .

[57]  D. Stuart,et al.  Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. , 1998, Molecular cell.

[58]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  P. A. Peterson,et al.  Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. , 1997, Science.

[60]  D. Stuart,et al.  Crystal structure of the complex between human CD8αα and HLA-A2 , 1997, Nature.

[61]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[62]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[63]  L. Kay,et al.  A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium , 1994, Journal of biomolecular NMR.

[64]  S. Buus,et al.  The Interaction between Beta 2‐Microglobulin (ßm) and Purified Class‐I Major Histocompatibility (MHC) Antigen , 1994, Scandinavian journal of immunology.

[65]  D. Wiley,et al.  The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2 , 1993, Cell.

[66]  D. Vučelič,et al.  1H NMR assignments and secondary structure of human beta 2-microglobulin in solution. , 1992, Biochemistry.

[67]  M. Whelan,et al.  HLA-B27 subtypes , 1991, The Lancet.

[68]  G. Reeke,et al.  Three-dimensional structure of beta 2-microglobulin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[70]  G. Gao,et al.  Plasticity of human CD8alpha alpha binding to peptide-HLA-A*2402 , 2011 .

[71]  F. Ahmad,et al.  Structural diversity of class I MHC-like molecules and its implications in binding specificities. , 2011, Advances in protein chemistry and structural biology.

[72]  F. Fogolari,et al.  Solution structure of beta(2)-microglobulin and insights into fibrillogenesis. , 2005, Biochimica et biophysica acta.

[73]  D. Wiley,et al.  Structure of the human class I histocompatibility antigen, HLA-A2. , 2005, Journal of immunology.

[74]  E. Reinherz,et al.  The crystal structure of a TL/CD8alphaalpha complex at 2.1 A resolution: implications for modulation of T cell activation and memory. , 2003, Immunity.

[75]  W. Delano The PyMOL Molecular Graphics System (2002) , 2002 .

[76]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[77]  A. Smolyar,et al.  Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alphaalpha ectodomain fragment in complex with H-2Kb. , 1998, Immunity.

[78]  Sidney M. Hecht,et al.  Structural Studies of , 1979 .