Atmospheric Interface Reentry Point Targeting Using Aerodynamic Drag Control

The ability to control the location of a spacecraft atmospheric interface reentry has been traditionally accomplished using propulsion. A novel technique is presented here where a predefined point of atmospheric interface reentry is achieved by adjusting the aerodynamic drag of a spacecraft in a circular orbit. If this method is employed at a sufficiently high starting altitude, any ground-track point accessible by the orbit can be targeted. This method can be broken up into two different parts. The first consists of finding the decay profile that achieves the desired reentry location. The second consists of keeping the spacecraft within this nominal decay trajectory, given the atmospheric uncertainty and other perturbations. The two parts of this method are presented here in detail. Finally, a case study is provided to demonstrate how this method could work in a realistic scenario and to evaluate its performance. The case study shows that a reentry point can be targeted with a 3σ error of less than 200 k...

[1]  Paul B. Hays,et al.  An empirical model of the Earth's horizontal wind fields: HWM07 , 2008 .

[2]  J. E. Hayes Satellite Landing Control System Using Drag Modulation , 1962 .

[3]  F. Regan,et al.  Dynamics of atmospheric re-entry , 1993 .

[4]  Angelo Miele,et al.  The 1st John V. Breakwell Memorial Lecture: Recent advances in the optimization and guidance of aeroassisted orbital transfers☆☆☆ , 1996 .

[5]  Nguyen X. Vinh,et al.  Explicit guidance of drag-modulated aeroassisted transfer between elliptical orbits , 1986 .

[6]  K. C. Pande,et al.  On optimal aerodynamic attitude control of spacecraft , 1979 .

[7]  R. Ravindran Optimal aerodynamic attitude stabilization of near earth satellites , 1971 .

[8]  Mark Conde,et al.  High‐latitude ionospheric drivers and their effects on wind patterns in the thermosphere , 2013 .

[9]  Surjit Varma,et al.  Multiple Satellite Formation Flying Using Differential Aerodynamic Drag , 2012 .

[10]  Z. Altamimi,et al.  Results and analysis of the ITRF94. , 1996 .

[11]  E. Bergmann,et al.  Orbital Formationkeeping with Differential Drag , 1987 .

[12]  Patrick Gallais,et al.  Atmospheric Re-Entry Vehicle Mechanics , 2007 .

[13]  D. King-hele,et al.  Satellite orbits in an atmosphere : theory and applications , 1987 .

[14]  Stephen Hobbs,et al.  De-Orbit Sail Design for TechDemoSat-1 , 2013 .

[15]  Stephen Hobbs,et al.  Descending Sun-Synchronous Orbits with Aerodynamic Inclination Correction , 2015 .

[16]  Riccardo Bevilacqua,et al.  Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation , 2008 .

[17]  Peter Roberts,et al.  ΔDsat, a QB50 CubeSat mission to study rarefied-gas drag modelling , 2013 .

[18]  Mark L. Psiaki,et al.  Nanosatellite Attitude Stabilization Using Passive Aerodynamics and Active Magnetic Torquing , 2004 .

[19]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[20]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[21]  Carmen Pardini,et al.  Thermospheric density model biases at the 23rd sunspot maximum , 2012 .

[22]  William J. Burke,et al.  A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices , 2008 .

[23]  Robert D. Braun,et al.  Drag-Modulation Flight-Control System Options for Planetary Aerocapture , 2014 .

[24]  Russell P. Patera,et al.  Drag Modulation as a Means of Mitigating Casualty Risk for Random Reentry , 2005 .

[25]  Robert D. Braun,et al.  Precision Landing at Mars Using Discrete-Event Drag Modulation , 2014 .

[26]  M. Horsley,et al.  Small Satellite Rendezvous Using Differential Lift and Drag , 2013 .

[27]  R. A. Challinor,et al.  The apparent rotation of the upper atmosphere , 1968 .

[28]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[29]  Jason Andrews,et al.  Nanosat Deorbit and Recovery System to Enable New Missions , 2011 .

[30]  P. D. Arthur,et al.  OPTIMUM DEBOOST ALTITUDE FOR SPECIFIED ATMOSPHERIC ENTRY ANGLE , 1963 .

[31]  Susan K. Avery,et al.  Empirical wind model for the upper, middle and lower atmosphere , 1996 .