A computer scientist's reconstruction of quantum theory

The rather unintuitive nature of quantum theory has led numerous people to develop sets of (physically motivated) principles that can be used to derive quantum mechanics from the ground up, in order to better understand where the structure of quantum systems comes from. From a computer scientist’s perspective we would like to study quantum theory in a way that allows interesting transformations and compositions of systems and that also includes infinite-dimensional datatypes. Here we present such a compositional reconstruction of quantum theory that includes infinite-dimensional systems. This reconstruction is noteworthy for three reasons: it is only one of a few that includes no restrictions on the dimension of a system; it allows for both classical, quantum, and mixed systems; and it makes no a priori reference to the structure of the real (or complex) numbers. This last point is possible because we frame our results in the language of category theory, specifically the categorical framework of effectus theory.

[1]  N. P. Landsman Poisson spaces with a transition probability , 1996, quant-ph/9603005.

[2]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[3]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[4]  Bart Jacobs,et al.  The Expectation Monad in Quantum Foundations , 2011, ArXiv.

[5]  F. Shultz,et al.  Geometry Of State Spaces Of Operator Algebras , 2002 .

[6]  Stefano Gogioso,et al.  Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.

[7]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[8]  M. P. Soler,et al.  Characterization of hilbert spaces by orthomodular spaces , 1995 .

[9]  Sean Tull,et al.  Categorical Operational Physics , 2019, ArXiv.

[10]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[11]  J. J. Van De Wetering Sequential product spaces are Jordan algebras , 2018, Journal of Mathematical Physics.

[12]  Gabriel Nagy,et al.  Sequential quantum measurements , 2001 .

[13]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[14]  Bas Westerbaan,et al.  Sequential product on effect logics , 2013 .

[15]  Sean Tull,et al.  Operational Theories of Physics as Categories , 2016, ArXiv.

[16]  G. Niestegge A simple and quantum-mechanically motivated characterization of the formally real Jordan algebras , 2019, Proceedings of the Royal Society A.

[17]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[18]  Bob Coecke,et al.  Reconstructing quantum theory from diagrammatic postulates , 2018, Quantum.

[19]  J. V. D. Wetering An effect-theoretic reconstruction of quantum theory , 2018, Compositionality.

[20]  F. Shultz On normed Jordan algebras which are Banach dual spaces , 1979 .

[21]  Howard Barnum,et al.  Thermodynamics and the structure of quantum theory , 2016, 1608.04461.

[22]  Giulio Chiribella,et al.  Entanglement as an axiomatic foundation for statistical mechanics , 2016, ArXiv.

[23]  R. Fritsch,et al.  Journal of Pure and Applied Algebra the Core of a Ring Day, B., a Reflection Theorem for Closed Categories Rudolf Fritsch , 2011 .

[24]  Chris Heunen,et al.  Axioms for the category of Hilbert spaces , 2021 .

[25]  Philipp A. Hoehn,et al.  Quantum theory from questions , 2015, 1511.01130.

[26]  F. Shultz,et al.  State spaces of operator algebras : basic theory, orientations, and C*-products , 2001 .

[27]  Sylvia Pulmannová,et al.  Representation theorem for convex effect algebras , 1998 .

[28]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[29]  J. V. D. Wetering,et al.  Three characterisations of the sequential product , 2018, Journal of Mathematical Physics.

[30]  Kenta Cho Total and Partial Computation in Categorical Quantum Foundations , 2015, QPL.

[31]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[32]  Markus P. Mueller,et al.  Entanglement and the three-dimensionality of the Bloch ball , 2011, 1111.4060.

[33]  B. Coecke,et al.  Operational Quantum Logic: An Overview , 2000, quant-ph/0008019.

[34]  Richard V. Kadison,et al.  OPERATOR ALGEBRAS WITH A FAITHFUL WEAKLY-CLOSED REPRESENTATION , 1956 .

[35]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[36]  W. Guz Conditional Probability and the Axiomatic Structure of Quantum Mechanics , 1981 .

[37]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[38]  Dichotomy between deterministic and probabilistic models in countably additive effectus theory , 2020, QPL.

[39]  Bart Jacobs,et al.  States of Convex Sets , 2015, FoSSaCS.

[40]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[41]  Howard Barnum,et al.  Composites and Categories of Euclidean Jordan Algebras , 2016, Quantum.

[42]  Kenta Cho,et al.  Effectuses in Categorical Quantum Foundations , 2019, ArXiv.

[43]  Bob Coecke,et al.  Terminality implies non-signalling , 2014, QPL.

[45]  G. Niestegge Conditional Probability, Three-Slit Experiments, and the Jordan Algebra Structure of Quantum Mechanics , 2009, 0912.0203.

[46]  Sean Tull,et al.  A Categorical Reconstruction of Quantum Theory , 2018, Log. Methods Comput. Sci..

[47]  Richard J. Greechie,et al.  Sequential products on effect algebras , 2002 .

[48]  Abraham Westerbaan,et al.  The Category of von Neumann Algebras , 2018, ArXiv.

[49]  Bart Jacobs Orthomodular lattices, Foulis Semigroups and Dagger Kernel Categories , 2010, Log. Methods Comput. Sci..

[50]  Stefano Gogioso,et al.  Categorical Probabilistic Theories , 2017, QPL.

[51]  J. V. D. Wetering Quantum Theory from Principles, Quantum Software from Diagrams , 2021, 2101.03608.

[52]  Kenta Cho,et al.  Semantics for a Quantum Programming Language by Operator Algebras , 2014, New Generation Computing.

[53]  D. Fivel Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms , 2010, 1010.5300.

[54]  J. Wright Measures with Values in a Partially Ordered Vector Space , 1972 .

[55]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[56]  Bas Westerbaan,et al.  Paschke Dilations , 2016, QPL.

[57]  Bart Jacobs,et al.  An Introduction to Effectus Theory , 2015, ArXiv.

[58]  Kenta Cho,et al.  Von Neumann Algebras form a Model for the Quantum Lambda Calculus , 2016, ArXiv.

[59]  Sean Tull,et al.  Space in Monoidal Categories , 2017, QPL.

[60]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[61]  Bas Westerbaan,et al.  A characterisation of ordered abstract probabilities , 2020, LICS.

[62]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[63]  Giulio Chiribella,et al.  Quantum Theory from First Principles - An Informational Approach , 2017 .

[64]  Chris Heunen,et al.  An embedding theorem for Hilbert categories , 2008, 0811.1448.

[65]  Bas Westerbaan Dagger and dilations in the category of von Neumann algebras , 2018, ArXiv.

[66]  Simon Perdrix,et al.  Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory , 2019, FoSSaCS.

[67]  Convex Structures and Effect Algebras , 1999 .

[68]  Bart Jacobs,et al.  Coreflections in Algebraic Quantum Logic , 2012 .

[69]  Lucien Hardy,et al.  Reconstructing Quantum Theory , 2013, 1303.1538.

[70]  Bart Jacobs,et al.  Probabilities, distribution monads, and convex categories , 2011, Theor. Comput. Sci..