Hierarchical real-time recognition of compound objects in images

This dissertation proposes a novel approach for the recognition of compound 2D objects in images under real-time conditions. A compound object consists of a number of rigid object parts that show arbitrary relative movements. The underlying principle of the approach is based on minimizing the overall search effort, and hence the computation time. This is achieved by restricting the search according to the relative movements of the object parts. Minimizing the search effort leads to the use of a hierarchical model: only a selected root object part, which stands at the top of the hierarchy, is searched within the entire search space. In contrast, the remaining parts are searched recursively with respect to each other within very restricted search spaces. By using the hierarchical model, prior knowledge about the spatial relations, i.e., relative movements, between the object parts is exploited already in an early stage of the recognition. Thus, the computation time can be reduced considerably. Another important advantage of the hierarchical model is that it provides an inherent determination of correspondence, i.e., because of the restricted search spaces, ambiguous matches are avoided. Consequently, a complicated and computationally expensive solution of the correspondence problem is not necessary. The approach shows additional remarkable features: it is general with regard to the type of object, it shows a very high robustness, and the compound object is localized with high accuracy even under projective distortions. Furthermore, several instances of the object in the image can be found simultaneously. One substantial concern of this dissertation is to achieve a high degree of automation. Therefore, a method that automatically trains and creates the hierarchical model is proposed. For this, several example images that show the relative movements of the object parts are analyzed. The analysis automatically determines the rigid object parts as well as the spatial relations between the parts. This is very comfortable for the user because a complicated manual description of the compound object is avoided. The obtained hierarchical model is used to recognize the compound object in real-time.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Leonidas J. Guibas,et al.  Shape-based Image Retrieval Using Geometric Hashing , 1997 .

[3]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[4]  Christoph Zierl,et al.  Multibildkalibrierung einer CCD-Kamera , 1995, DAGM-Symposium.

[5]  Michal Ponder,et al.  Interaction between real and virtual humans: playing checkers , 2000 .

[6]  Markus Ulrich,et al.  Performance Evaluation of 2D Object Recognition Techniques , 2002 .

[7]  Pascal Fua,et al.  Real-time 3D object recognition for automatic tracker initialization , 2001, Proceedings IEEE and ACM International Symposium on Augmented Reality.

[8]  K W Wong MATHEMATICAL FORMULATION AND DIGITAL ANALYSIS IN CLOSE-RANGE PHOTOGRAMMETRY , 1975 .

[9]  Longin Jan Latecki,et al.  Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution , 1999, Comput. Vis. Image Underst..

[10]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[12]  Wen-Jing Li,et al.  Object recognition and articulated object learning by accumulative Hopfield matching , 2002, Pattern Recognit..

[13]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[14]  Michael L. Baird Structural Pattern Recognition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Bernd Radig,et al.  MORAL - A Vision-Based Object Recognition System for Autonomous Mobile Systems , 1997, CAIP.

[16]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[17]  Shang-Hong Lai,et al.  An Accurate and Fast Pattern Localization Algorithm for Automated Visual Inspection , 1999, Real Time Imaging.

[18]  Virginio Cantoni,et al.  Structural shape recognition in a multiresolution environment , 1987 .

[19]  Alain Crouzil,et al.  A new correlation criterion based on gradient fields similarity , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[20]  Daniel P. Huttenlocher,et al.  Efficient matching of pictorial structures , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[21]  Roger Y. Tsai,et al.  Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[22]  W. Faig CALIBRATION OF CLOSE-RANGE PHOTOGRAMMETRIC SYSTEMS: MATHEMATICAL FORMULATION , 1975 .

[23]  Anil K. Jain,et al.  Automatic Construction of 2D Shape Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  John Illingworth,et al.  ForeSight: fast object recognition using geometric hashing with edge-triple features , 1997, Proceedings of International Conference on Image Processing.

[25]  Linda G. Shapiro,et al.  Computer and Robot Vision (Volume II) , 2002 .

[26]  Maarten J. Korsten,et al.  Object recognition algorithm based on inexact graph matching and its application in a color vision system for recognition of electronic components on PCBs , 1997, Electronic Imaging.

[27]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ronald L. Graham,et al.  On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.

[29]  Jürgen Perl,et al.  Graphentheorie : Grundlagen und Anwendungen , 1981 .

[30]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[31]  C. Steger,et al.  The Role of Grouping for Road Extraction , 1997 .

[32]  Bernd Korn,et al.  Erkennung und Bestimmung der aktuellen Konstellation von Objekten mit Scharniergelenken , 1996, DAGM-Symposium.

[33]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[34]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .

[35]  J. Canny Finding Edges and Lines in Images , 1983 .

[36]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[37]  Donald D. Hoffman,et al.  Parsing silhouettes: The short-cut rule , 1999, Perception & psychophysics.

[38]  Takeo Kanade,et al.  Use of Fourier and Karhunen-Loeve decomposition for fast pattern matching with a large set of templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[40]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[41]  Alexa Hauck,et al.  Hierarchical recognition of articulated objects from single perspective views , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[44]  Ponnuthurai N. Suganthan,et al.  Structural pattern recognition using genetic algorithms , 2002, Pattern Recognit..

[45]  David Salesin,et al.  Fast multiresolution image querying , 1995, SIGGRAPH.

[46]  IMAG-LIFIA,et al.  Experimental Comparison of Correlation Techniques , 1995 .

[47]  Clark F. Olson,et al.  Automatic target recognition by matching oriented edge pixels , 1997, IEEE Trans. Image Process..

[48]  Shang-Hong Lai,et al.  FLASH system for fast and accurate pattern localization , 1999, Electronic Imaging.

[49]  Sung-Hyuk Cha,et al.  Efficient Algorithms for Image Template and Dictionary Matching , 2000, Journal of Mathematical Imaging and Vision.

[50]  S. Pizer,et al.  The Image Processing Handbook , 1994 .

[51]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[52]  C. Steger OCCLUSION , CLUTTER , AND ILLUMINATION INVARIANT OBJECT RECOGNITION , 2002 .

[53]  Horst Stöcker,et al.  Taschenbuch mathematischer Formeln und moderner Verfahren (3. Aufl.) , 1995 .

[54]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[55]  Markus Ulrich,et al.  Real-time object recognition using a modified generalized Hough transform , 2003, Pattern Recognit..

[56]  D. Lowe Fitting Parameterized 3-D Models to Images , 1989 .

[57]  James H. Elder,et al.  Are Edges Incomplete? , 1999, International Journal of Computer Vision.

[58]  Markus Ulrich,et al.  Real-Time Object Recognition in Digital Images for Industrial Applications , 2001 .

[59]  S. Lanser,et al.  A modification of Deriche's approach to edge detection , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[60]  Shahriar Negahdaripour,et al.  Revised Definition of Optical Flow: Integration of Radiometric and Geometric Cues for Dynamic Scene Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  D. Huttenlocher,et al.  Recognition by Matching With Edge Location and Orientation , 1996 .

[62]  Robert B. Fisher,et al.  Model-driven grouping and recognition of generic object parts from single images , 1997, Robotics Auton. Syst..

[63]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[64]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[65]  P. Danielsson Euclidean distance mapping , 1980 .

[66]  Clark F. Olson,et al.  View-Based Recognition Using an Eigenspace Approximation to the Hausdorff Measure , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Markus Ulrich,et al.  Empirical Performance Evaluation of Object Recognition Methods , 2002 .

[68]  Sung-Hyuk Cha,et al.  Distance between histograms of angular measurements and its application to handwritten character similarity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[69]  Keiichi Abe,et al.  Parts of planar shapes , 1996, Pattern Recognit..

[70]  Dong-Gyu Sim,et al.  Two-dimensional object alignment based on the robust oriented Hausdorff similarity measure , 2001, IEEE Trans. Image Process..

[71]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[72]  V. F. Leavers,et al.  Which Hough transform , 1993 .

[73]  T. Stephenson Image analysis , 1992, Nature.

[74]  Andrew D. H. Thomas Compressing the parameter space of the generalised Hough transform , 1992, Pattern Recognit. Lett..

[75]  H.A. Beyer,et al.  Accurate calibration of CCD-cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[76]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[77]  Josef Kittler,et al.  Efficient and Robust Retrieval by Shape Content through Curvature Scale Space , 1998, Image Databases and Multi-Media Search.

[78]  Shun'ichi Kaneko,et al.  Robust image registration by increment sign correlation , 2002, Pattern Recognit..

[79]  A. Georgopoulos,et al.  PARAMETERSCHÄTZUNG UND HYPOTHESENTESTS IN LINEAREN MODELLEN , 1981 .

[80]  James Ze Wang,et al.  Wavelets and Imaging Informatics: A Review of the Literature , 2001, J. Biomed. Informatics.

[81]  C. Steger SUBPIXEL-PRECISE EXTRACTION OF LINES AND EDGES , 2000 .

[82]  Kenneth W. Tobin,et al.  Image retrieval in the industrial environment , 1999, Electronic Imaging.

[83]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  Armin Gruen,et al.  REAL-TIME PHOTOGRAMMETRY AT THE DIGITAL PHOTOGRAMMETRIC STATION (DIPS) OF ETH ZURICH , 1987 .

[85]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  D. Huttenlocher,et al.  Recognition by matching dense, oriented edge pixels , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[88]  Robert E. Tarjan,et al.  Finding optimum branchings , 1977, Networks.

[89]  Kaleem Siddiqi,et al.  Parts of Visual Form: Computational Aspects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[90]  Haim J. Wolfson,et al.  Model-Based Object Recognition by Geometric Hashing , 1990, ECCV.

[91]  Carsten Steger,et al.  Similarity Measures for Occlusion, Clutter, and Illumination Invariant Object Recognition , 2001, DAGM-Symposium.

[92]  Shang-Hong Lai,et al.  Robust and efficient image alignment with spatially varying illumination models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[93]  Ramakant Nevatia,et al.  Detecting runways in complex airport scenes , 1990, Comput. Vis. Graph. Image Process..

[94]  Larry S. Davis,et al.  Hierarchical generalized Hough transforms and line-segment based generalized H ugh transforms , 1982, Pattern Recognit..

[95]  Xing Chen,et al.  Hough transform using slope and curvature as local properties to detect arbitrary 2D shapes , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[96]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[97]  PixelsClark,et al.  Recognition by Matching Dense , Oriented Edge , 1995 .

[98]  Daniel Scharstein,et al.  Matching images by comparing their gradient fields , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[99]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[100]  Wen-Hsiang Tsai,et al.  Fast generalized Hough transform , 1990, Pattern Recognit. Lett..

[101]  Robert M. Haralick,et al.  Decomposition of Two-Dimensional Shapes by Graph-Theoretic Clustering , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  Reimar Lenz,et al.  Linsenfehlerkorrigierte Eichung von Halbleiterkameras mit Standarobjektiven für hochgenaue 3D-Messungen in Echtzeit , 1987, DAGM-Symposium.

[103]  Qi Tian,et al.  Algorithms for subpixel registration , 1986 .

[104]  LateckiLongin Jan,et al.  Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution , 1999 .

[105]  Paul A. Beardsley,et al.  Camera Calibration Using Multiple Images , 1992, ECCV.

[106]  Dongming Zhao,et al.  Robust-statistic-based template matching , 1997, Electronic Imaging.

[107]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[108]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[109]  Wen-Hsiang Tsai,et al.  Perspective-transformation-invariant generalized hough transform for perspective planar shape detection and matching , 1997, Pattern Recognit..

[110]  Christian Heipke,et al.  Accuracy Potential of a Digital CCD Camera for Photogrammetric Applications , 1991, DAGM-Symposium.

[111]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[112]  Roger Y. Tsai,et al.  Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Fritz Bock An algorithm to construct a minimum directed spanning tree in a directed network , 1971 .

[114]  Markus Ulrich,et al.  Automatic Hierarchical Object Decomposition for Object Recognition , 2002 .

[115]  Stan Sclaroff,et al.  Deformable shape detection and description via model-based region grouping , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[116]  P. E. Anuta,et al.  Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform Techniques , 1970 .

[117]  Dinesh Manocha,et al.  Robust Algorithms for Object Localization , 2004, International Journal of Computer Vision.

[118]  Kim L. Boyer,et al.  Robust Contour Decomposition Using a Constant Curvature Criterion , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[119]  Robert E. Tarjan,et al.  Efficient algorithms for finding minimum spanning trees in undirected and directed graphs , 1986, Comb..

[120]  G. Nemhauser,et al.  Integer Programming , 2020 .

[121]  Heinrich Ebner,et al.  Self calibrating block adjustment , 1976 .

[122]  Michal Irani,et al.  All About Direct Methods , 1999 .

[123]  Ashraf A. Kassim,et al.  A comparative study of efficient generalised Hough transform techniques , 1999, Image Vis. Comput..

[124]  Dong-Gyu Sim,et al.  Robust Hausdorff distance matching algorithms using pyramidal structures , 2001, Pattern Recognit..

[125]  Roland T. Chin,et al.  On image analysis by the methods of moments , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[126]  Dean Brown,et al.  Decentering distortion of lenses , 1966 .

[127]  Yacov Hel-Or,et al.  Constraint-fusion for interpretation of articulated objects , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[128]  Dariu Gavrila,et al.  Virtual sample generation for template-based shape matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[129]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[130]  Hassan Foroosh,et al.  Extension of phase correlation to subpixel registration , 2002, IEEE Trans. Image Process..

[131]  James Ze Wang,et al.  Wavelet-based image indexing techniques with partial sketch retrieval capability , 1997, Proceedings of ADL '97 Forum on Research and Technology. Advances in Digital Libraries.

[132]  Harvey F. Silverman,et al.  A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.

[133]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[134]  William Rucklidge,et al.  Efficiently Locating Objects Using the Hausdorff Distance , 1997, International Journal of Computer Vision.

[135]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[136]  S. Ullman Aligning pictorial descriptions: An approach to object recognition , 1989, Cognition.

[137]  Yacov Hel-Or,et al.  Model Based Pose Estimation of Articulated and Constrained Objects , 1994, ECCV.

[138]  Hiroshi Murase,et al.  Coarse-to-fine adaptive masks for appearance matching of occluded scenes , 1998, Machine Vision and Applications.

[139]  Carsten Steger,et al.  Unbiased extraction of curvilinear structures from 2D and 3D images , 1998 .

[140]  Jose Paumard,et al.  Robust comparison of binary images , 1997, Pattern Recognit. Lett..

[141]  Albert Baumgartner EXTRACTION OF ROADS FROM AERIAL IMAGERY BASED ON GROUPING AND LOCAL CONTEXT , 1998 .

[142]  Michal Ponder,et al.  Interaction Between Real and Virtual Humans: Playing Checkers , 2000, EGVE.

[143]  Steven L. Tanimoto,et al.  Template matching in pyramids , 1981 .

[144]  H. Bunke,et al.  Graph matching for visual object recognition. , 2000, Spatial vision.

[145]  Matteo Fischetti,et al.  An Efficient Algorithm for the Min-Sum Arborescence Problem on Complete Digraphs , 1993, INFORMS J. Comput..

[146]  I. Rock,et al.  The legacy of Gestalt psychology. , 1990, Scientific American.

[147]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[148]  Ramakant Nevatia,et al.  Detection of buildings using perceptual grouping and shadows , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[149]  George Vosselman,et al.  3D Reconstruction of Industrial Installations by Constrained Fitting of CAD Models to Images , 2000, DAGM-Symposium.

[150]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[151]  Dana H. Ballard,et al.  Viewer Independent Shape Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[152]  Douglas D. Bacon Image preprocessing to improve the reliability of normalized correlation , 1997, Electronic Imaging.

[153]  Ernst Gotthardt,et al.  Einführung in die Ausgleichungsrechnung , 1978 .

[154]  David G. Lowe,et al.  Probabilistic Models of Appearance for 3-D Object Recognition , 2000, International Journal of Computer Vision.

[155]  John Regehr,et al.  Real-Time for the Real World , 2002 .

[156]  Horst Bunke,et al.  A New Algorithm for Error-Tolerant Subgraph Isomorphism Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[157]  Arnold W. M. Smeulders,et al.  Image Databases and Multi-Media Search , 1998, Image Databases and Multi-Media Search.

[158]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[159]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[160]  Paul L. Rosin Shape Partitioning by Convexity , 1999, BMVC.

[161]  S Shalev,et al.  Pseudocorrelation: a fast, robust, absolute, grey-level image alignment algorithm. , 1994, Medical physics.