Round-robin differential-phase-shift quantum key distribution with twisted photons

Quantum key distribution (QKD) offers the possibility for two individuals to communicate a securely encrypted message. A common technical requirement is the monitoring of signal disturbance in a QKD system to bound the information leakage toward an unwanted eavesdropper. Recently, the round-robin differential-phase-shift (RRDPS) protocol, which encodes bits of information in a high-dimensional state space, was proposed to introduce an upper bound on the amount of Eve's information based on dimensionality of prepared quantum states and randomized measurement settings. Since its introduction, many realizations of the RRDPS protocol were demonstrated using trains of coherent pulses (time bin encoding). Given that this realization of the protocol requires active and random choice of many delays in a delayed Mach-Zehnder interferometer, its implementation can be technically demanding. Here, we propose and experimentally demonstrate an implementation of the RRDPS protocol using the photonic orbital angular momentum degree of freedom in dimensions $L=3$--8, 16, 32, and 64. In particular, we show that Alice's generation stage and Bob's detection stage can each be reduced to a single phase element, greatly simplifying the implementation. Our scheme offers a practical path to using RRDPS protocol in free-space quantum channels.

[1]  Wei Chen,et al.  Experimental round-robin differential phase-shift quantum key distribution , 2015, 1505.08142.

[2]  H. F. Chau Quantum key distribution using qudits that each encode one bit of raw key , 2015 .

[3]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[4]  Ebrahim Karimi,et al.  Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. , 2013, Optics letters.

[5]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[6]  G. Guo,et al.  Experimental demonstration of quantum key distribution without monitoring of the signal disturbance , 2015, 1505.07884.

[7]  R. Boyd,et al.  Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges , 2014, 1407.5491.

[8]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[9]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[10]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[11]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[12]  Shuang Wang,et al.  Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme , 2017, 1707.00387.

[13]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[14]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[15]  Robert W Boyd,et al.  Rapid generation of light beams carrying orbital angular momentum. , 2013, Optics express.

[16]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[17]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[18]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[19]  Zach DeVito,et al.  Opt , 2017 .

[20]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[21]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[22]  Ebrahim Karimi,et al.  Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement , 2014, 1401.3512.

[23]  Yoshihisa Yamamoto,et al.  Differential phase shift quantum key distribution. , 2002 .

[24]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[25]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[26]  Masato Koashi,et al.  Experimental quantum key distribution without monitoring signal disturbance , 2015, Nature Photonics.

[27]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[29]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[30]  Zhu Cao,et al.  Experimental passive round-robin differential phase-shift quantum key distribution. , 2015, Physical review letters.

[31]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[32]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[33]  Andrew G. Glen,et al.  APPL , 2001 .

[34]  A. Zeilinger,et al.  Twisted photon entanglement through turbulent air across Vienna , 2015, Proceedings of the National Academy of Sciences.

[35]  Rong Wang,et al.  Improved security bound for the round-robin-differential-phase-shift quantum key distribution , 2018, Nature Communications.

[36]  R. W. Boyd,et al.  Radial quantum number of Laguerre-Gauss modes , 2014, 1401.4985.

[37]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[38]  R. Boyd,et al.  High-dimensional intracity quantum cryptography with structured photons , 2016, 1612.05195.

[39]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[40]  Ebrahim Karimi,et al.  Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference , 2014 .

[41]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[42]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[43]  Qinan Wang,et al.  Experimentally feasible quantum-key-distribution scheme using qubit-like qudits and its comparison with existing qubit- and qudit-based protocols , 2017 .

[44]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[45]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[46]  Leif Katsuo Oxenløwe,et al.  Two-dimensional distributed-phase-reference protocol for quantum key distribution , 2016, Scientific Reports.

[47]  Vincenzo Grillo,et al.  Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography. , 2017, Optics express.

[48]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.