Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms

[1]  A. K. Nickerson,et al.  Diffusion and Sorption of Cesium, Strontium, and Iodine in Water-Saturated Cement , 1988 .

[2]  F. P. Glasser,et al.  Progress in the immobilization of radioactive wastes in cement , 1992 .

[3]  Fredrik P. Glasser,et al.  Application of portland cement-based materials to radioactive waste immobilization , 1992 .

[4]  F. P. Glasser,et al.  Mineralogical aspects of cement in radioactive waste disposal , 2001, Mineralogical Magazine.

[5]  Hisham F. Aly,et al.  Leaching kinetics of 137Cs and 60Co radionuclides fixed in cement and cement-based materials , 2002 .

[6]  S. Goñi,et al.  Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste. , 2002, Waste management.

[7]  A. Osmanlioglu,et al.  Immobilization of radioactive waste by cementation with purified kaolin clay. , 2002, Waste management.

[8]  J. W. P. and,et al.  Characterization of Fly-Ash-Based Geopolymeric Binders Activated with Sodium Aluminate , 2002 .

[9]  H. G. Nowier,et al.  Assessment of Fossil Fuel Fly Ash Formulations in the Immobilization of Hazardous Wastes , 2004 .

[10]  C E Majorana,et al.  Parametric analyses of diffusion of activated sources in disposal forms. , 2004, Journal of hazardous materials.

[11]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[12]  Caijun Shi,et al.  Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. , 2006, Journal of hazardous materials.

[13]  S. Paria,et al.  Solidification/Stabilization of Organic and Inorganic Contaminants using Portland Cement: A Literature Review , 2006 .

[14]  M. I. Ojovan,et al.  Immobilisation of radioactive waste in glasses, glass composite materials and ceramics , 2006 .

[15]  D. Dermatas,et al.  An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions , 2006 .

[16]  W. E. Lee The contribution of ceramics to environmental clean up , 2006 .

[17]  A. M. El-kamash,et al.  Immobilization of cesium and strontium radionuclides in zeolite-cement blends. , 2006, Journal of hazardous materials.

[18]  Kwesi Sagoe-Crentsil,et al.  Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures , 2007 .

[19]  Rehab O. Abdel Rahman,et al.  Modeling the long-term leaching behavior of (137)Cs, (60)Co, and (152,154)Eu radionuclides from cement-clay matrices. , 2007, Journal of hazardous materials.

[20]  A. Katz,et al.  The combined effect of radiation and carbonation on the immobilization of Sr and Cs ions in cementitious pastes , 2008 .

[21]  O. Pandey,et al.  Gamma ray induced modifications of quaternary silicate glasses , 2008 .

[22]  L. Verdolotti,et al.  Geopolymerization reaction to consolidate incoherent pozzolanic soil , 2008 .

[23]  J. Temuujin,et al.  Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. , 2009, Journal of hazardous materials.

[24]  Jin-sheng Wang,et al.  Sources of anthropogenic radionuclides in the environment: a review. , 2010, Journal of environmental radioactivity.

[25]  Warren A. Dick,et al.  Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. , 2010, Journal of hazardous materials.

[26]  Jianlong Wang,et al.  Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite , 2011 .

[27]  H. El-Didamony,et al.  Immobilization of low and intermediate level of organic radioactive wastes in cement matrices. , 2011, Journal of hazardous materials.

[28]  J. Vale,et al.  Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. , 2011, Journal of hazardous materials.

[29]  M. I. Ojovan,et al.  Long-term field and laboratory leaching tests of cemented radioactive wastes. , 2011, Journal of hazardous materials.

[30]  R. Pellenq,et al.  Glassy nature of water in an ultraconfining disordered material: the case of calcium-silicate-hydrate. , 2011, Journal of the American Chemical Society.

[31]  A. V. van Duin,et al.  Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. , 2012, Journal of the American Chemical Society.

[32]  F. Frizon,et al.  Mg–Zr alloy behavior in basic solutions and immobilization in Portland cement and Na-geopolymer with sodium fluoride inhibitor , 2012 .

[33]  Xiaobin Zhu,et al.  Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China. , 2012, The Science of the total environment.

[34]  K. Hayashi,et al.  Radiocesium and radioiodine in soil particles agitated by agricultural practices: field observation after the Fukushima nuclear accident. , 2012, The Science of the total environment.

[35]  H. M. Saleh,et al.  Leaching behavior of cement-natural clay composite incorporating real spent radioactive liquid scintillator , 2013 .

[36]  F. Frizon,et al.  Influence of gamma ray irradiation on metakaolin based sodium geopolymer , 2013 .

[37]  H. Cui,et al.  Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. , 2013, Journal of hazardous materials.

[38]  J. I. Álvarez,et al.  Solidification/stabilization of toxic metals in calcium aluminate cement matrices. , 2013, Journal of hazardous materials.

[39]  G. Ye,et al.  The pore structure and permeability of alkali activated fly ash , 2013 .

[40]  Michael D. Voegele,et al.  Site selection and regulatory basis for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste , 2012, Reliab. Eng. Syst. Saf..