miRmine: a database of human miRNA expression profiles

Motivation: MicroRNAs (miRNAs) are small non‐coding RNAs that are involved in post‐transcriptional regulation of gene expression. In this high‐throughput sequencing era, a tremendous amount of RNA‐seq data is accumulating, and full utilization of publicly available miRNA data is an important challenge. These data are useful to determine expression values for each miRNA, but quantification pipelines are in a primitive stage and still evolving; there are many factors that affect expression values significantly. Results: We used 304 high‐quality microRNA sequencing (miRNA‐seq) datasets from NCBI‐SRA and calculated expression profiles for different tissues and cell‐lines. In each miRNA‐seq dataset, we found an average of more than 500 miRNAs with higher than 5x coverage, and we explored the top five highly expressed miRNAs in each tissue and cell‐line. This user‐friendly miRmine database has options to retrieve expression profiles of single or multiple miRNAs for a specific tissue or cell‐line, either normal or with disease information. Results can be displayed in multiple interactive, graphical and downloadable formats. Availability and Implementation: http://guanlab.ccmb.med.umich.edu/mirmine Contact: bharatpa@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  Jun Lu,et al.  A high-throughput microRNA expression profiling system. , 2014, Methods in molecular biology.

[2]  Eran Hornstein,et al.  The Promoter of the pri-miR-375 Gene Directs Expression Selectively to the Endocrine Pancreas , 2009, PloS one.

[3]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[4]  Yan Zhang,et al.  TMREC: A Database of Transcription Factor and MiRNA Regulatory Cascades in Human Diseases , 2015, PloS one.

[5]  B. Davis-Dusenbery,et al.  Mechanisms of control of microRNA biogenesis. , 2010, Journal of biochemistry.

[6]  F. Sheedy,et al.  Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response , 2015, Front. Immunol..

[7]  Eleanor Howe,et al.  RNA-Seq analysis in MeV , 2011, Bioinform..

[8]  An-Yuan Guo,et al.  Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing , 2014, RNA biology.

[9]  Sampath Kannan,et al.  DASHR: database of small human noncoding RNAs , 2015, Nucleic Acids Res..

[10]  Carmen J. Marsit,et al.  miR-16 and miR-21 Expression in the Placenta Is Associated with Fetal Growth , 2011, PloS one.

[11]  M. Tewari,et al.  MicroRNA profiling: approaches and considerations , 2012, Nature Reviews Genetics.

[12]  Jie Wu,et al.  deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data , 2015, Nucleic Acids Res..

[13]  Salvatore Campo,et al.  Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). , 2012, International journal of oncology.

[14]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[15]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[16]  Barbara Burwinkel,et al.  Extracellular miRNAs: the mystery of their origin and function. , 2012, Trends in biochemical sciences.

[17]  Hsien-Da Huang,et al.  miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions , 2013, Nucleic Acids Res..

[18]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[19]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[20]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[21]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[22]  Yuanfang Guan,et al.  MI-PVT: A Tool for Visualizing the Chromosome-Centric Human Proteome. , 2015, Journal of proteome research.

[23]  Sanghyuk Lee,et al.  miRGator: an integrated system for functional annotation of microRNAs , 2007, Nucleic Acids Res..

[24]  M. Friedländer,et al.  Computational Prediction of miRNA Genes from Small RNA Sequencing Data , 2015, Front. Bioeng. Biotechnol..

[25]  Nathan R. Johnson,et al.  Improved Placement of Multi-Mapping Small RNAs , 2016 .

[26]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[27]  Miao Zhao,et al.  Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells , 2014, Cellular and Molecular Immunology.

[28]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[29]  M. Abdellatif Differential Expression of MicroRNAs in Different Disease States , 2012, Circulation research.

[30]  A. Jaiswal,et al.  miRNA–transcription factor interactions: a combinatorial regulation of gene expression , 2013, Molecular Genetics and Genomics.

[31]  Z. Lasabová,et al.  Overexpression of miR-21 and miR-122 in preeclamptic placentas. , 2015, Neuro endocrinology letters.

[32]  Fabian J Theis,et al.  miTALOS: analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs. , 2011, RNA.

[33]  Praveen Sethupathy,et al.  Addressing Bias in Small RNA Library Preparation for Sequencing: A New Protocol Recovers MicroRNAs that Evade Capture by Current Methods , 2015, Front. Genet..

[34]  M. Siomi,et al.  Posttranscriptional regulation of microRNA biogenesis in animals. , 2010, Molecular cell.

[35]  Y Zeng,et al.  Principles of micro-RNA production and maturation , 2006, Oncogene.

[36]  G. Calin,et al.  MicroRNAome genome: A treasure for cancer diagnosis and therapy , 2014, CA: a cancer journal for clinicians.

[37]  Xiaowei Wang,et al.  Systematic identification of microRNA functions by combining target prediction and expression profiling , 2006, Nucleic acids research.

[38]  Wei-Chung Cheng,et al.  YM500: a small RNA sequencing (smRNA-seq) database for microRNA research , 2012, Nucleic Acids Res..

[39]  Zhifu Sun,et al.  CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data , 2014, BMC Genomics.

[40]  Lili Xiong,et al.  Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues , 2014, Scientific Reports.

[41]  Thean-Hock Tang,et al.  Biases in small RNA deep sequencing data , 2013, Nucleic acids research.

[42]  Wei-Chung Cheng,et al.  YM500v2: a small RNA sequencing (smRNA-seq) database for human cancer miRNome research , 2014, Nucleic Acids Res..

[43]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[44]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.