Ribosome-associated ncRNAs: An emerging class of translation regulators

Accumulating recent evidence identified the ribosome as binding target for numerous small and long non-protein-coding RNAs (ncRNAs) in various organisms of all 3 domains of life. Therefore it appears that ribosome-associated ncRNAs (rancRNAs) are a prevalent, yet poorly understood class of cellular transcripts. Since rancRNAs are associated with the arguable most central enzyme of the cell it seems plausible to propose a role in translation control. Indeed first experimental evidence on small rancRNAs has been presented, linking ribosome association with fine-tuning the rate of protein biosynthesis in a stress-dependent manner.

[1]  R. Stroud,et al.  Crystal Structure of the Signal Sequence Binding Subunit of the Signal Recognition Particle , 1998, Cell.

[2]  K. Strub,et al.  Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA , 2014, Nucleic acids research.

[3]  G. Storz,et al.  Bacterial antisense RNAs: how many are there, and what are they doing? , 2010, Annual review of genetics.

[4]  Daniel S. Day,et al.  Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification , 2013, Proceedings of the National Academy of Sciences.

[5]  Eric C. Lai,et al.  Endogenous small interfering RNAs in animals , 2008, Nature Reviews Molecular Cell Biology.

[6]  G. Hannon,et al.  Control of translation and mRNA degradation by miRNAs and siRNAs. , 2006, Genes & development.

[7]  C. Hayes,et al.  The tmRNA ribosome-rescue system. , 2012, Advances in protein chemistry and structural biology.

[8]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[9]  N. Polacek,et al.  tRNA-Derived Fragments Target the Ribosome and Function as Regulatory Non-Coding RNA in Haloferax volcanii , 2012, Archaea.

[10]  Luis Serrano,et al.  Correlation of mRNA and protein in complex biological samples , 2009, FEBS letters.

[11]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[12]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[13]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[14]  N. Polacek,et al.  Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis , 2012, Nucleic acids research.

[15]  J. Keene,et al.  The ribonome: a dominant force in co‐ordinating gene expression , 2009, Biology of the cell.

[16]  J. Häsler,et al.  Alu RNP and Alu RNA regulate translation initiation in vitro , 2006, Nucleic acids research.

[17]  T. Girke,et al.  Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis , 2013, Proceedings of the National Academy of Sciences.

[18]  N. Polacek,et al.  Slicing tRNAs to boost functional ncRNA diversity , 2013, RNA biology.

[19]  M. Rodnina,et al.  Conformation of 4 . 5 S RNA in the signal recognition particle and on the 30 S ribosomal subunit , 2005 .

[20]  M. Latronico,et al.  RNA Silencing: Small RNA‐Mediated Posttranscriptional Regulation of mRNA and the Implications for Heart Electropathophysiology , 2009, Journal of cardiovascular electrophysiology.

[21]  Xin Zhang,et al.  Signal recognition particle: an essential protein-targeting machine. , 2013, Annual review of biochemistry.

[22]  Kotb Abdelmohsen,et al.  LincRNA-p21 suppresses target mRNA translation. , 2012, Molecular cell.

[23]  Piero Carninci,et al.  Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat , 2012, Nature.

[24]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[25]  J. Rinn,et al.  Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs , 2013, Development.

[26]  Kamilla Bakowska-Zywicka,et al.  An mRNA-Derived Noncoding RNA Targets and Regulates the Ribosome , 2014, Molecular cell.

[27]  T. Rana,et al.  Gene regulation by non-coding RNAs , 2014, Critical reviews in biochemistry and molecular biology.

[28]  S. Cohen Everything old is new again: (linc)RNAs make proteins! , 2014, The EMBO journal.

[29]  J. Cate,et al.  Regulating the ribosome: a spotlight on RNA dark matter. , 2014, Molecular cell.

[30]  J. Davies,et al.  What are antibiotics? Archaic functions for modern activities , 1990, Molecular microbiology.

[31]  M. Rodnina,et al.  Conformation of 4.5S RNA in the signal recognition particle and on the 30S ribosomal subunit. , 2005, RNA.

[32]  G. Hutvagner,et al.  Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells , 2013, RNA biology.

[33]  E. Meyerowitz,et al.  Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control , 2010, Molecular Systems Biology.

[34]  E. Cuppen,et al.  Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes , 2014, Genome Biology.

[35]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[36]  Marcel W. Coolen,et al.  Regulatory Roles for Long ncRNA and mRNA , 2013, Cancers.

[37]  M. Hentze,et al.  Molecular mechanisms of translational control , 2004, Nature Reviews Molecular Cell Biology.

[38]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[39]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[40]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[41]  M. Kaneko,et al.  Digital expression profiling of the compartmentalized translatome of Purkinje neurons , 2014, Genome research.

[42]  A. Muto,et al.  tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell , 2014, Front. Genet..

[43]  S. Shan,et al.  Co-translational protein targeting to the bacterial membrane. , 2014, Biochimica et biophysica acta.

[44]  David Tollervey,et al.  RNA in pieces. , 2011, Trends in genetics : TIG.

[45]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[46]  Brian J. Bennett,et al.  Comparative Analysis of Proteome and Transcriptome Variation in Mouse , 2011, PLoS genetics.

[47]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.